Artwork

محتوای ارائه شده توسط LessWrong. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط LessWrong یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !
icon Daily Deals

[Linkpost] “If you’re not sure how to sort a list or grid—seriate it!” by gwern

4:37
 
اشتراک گذاری
 

Manage episode 485516824 series 3364758
محتوای ارائه شده توسط LessWrong. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط LessWrong یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
This is a link post. "Getting Things in Order: An Introduction to the R Package seriation":
Seriation [or "ordination"), i.e., finding a suitable linear order for a set of objects given data and a loss or merit function, is a basic problem in data analysis. Caused by the problem's combinatorial nature, it is hard to solve for all but very small sets. Nevertheless, both exact solution methods and heuristics are available.
In this paper we present the package seriation which provides an infrastructure for seriation with R. The infrastructure comprises data structures to represent linear orders as permutation vectors, a wide array of seriation methods using a consistent interface, a method to calculate the value of various loss and merit functions, and several visualization techniques which build on seriation.
To illustrate how easily the package can be applied for a variety of applications, a comprehensive collection of [...]
---
First published:
May 28th, 2025
Source:
https://www.lesswrong.com/posts/u2ww8yKp9xAB6qzcr/if-you-re-not-sure-how-to-sort-a-list-or-grid-seriate-it
Linkpost URL:
https://www.jstatsoft.org/article/download/v025i03/227
---
Narrated by TYPE III AUDIO.
  continue reading

573 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 485516824 series 3364758
محتوای ارائه شده توسط LessWrong. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط LessWrong یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
This is a link post. "Getting Things in Order: An Introduction to the R Package seriation":
Seriation [or "ordination"), i.e., finding a suitable linear order for a set of objects given data and a loss or merit function, is a basic problem in data analysis. Caused by the problem's combinatorial nature, it is hard to solve for all but very small sets. Nevertheless, both exact solution methods and heuristics are available.
In this paper we present the package seriation which provides an infrastructure for seriation with R. The infrastructure comprises data structures to represent linear orders as permutation vectors, a wide array of seriation methods using a consistent interface, a method to calculate the value of various loss and merit functions, and several visualization techniques which build on seriation.
To illustrate how easily the package can be applied for a variety of applications, a comprehensive collection of [...]
---
First published:
May 28th, 2025
Source:
https://www.lesswrong.com/posts/u2ww8yKp9xAB6qzcr/if-you-re-not-sure-how-to-sort-a-list-or-grid-seriate-it
Linkpost URL:
https://www.jstatsoft.org/article/download/v025i03/227
---
Narrated by TYPE III AUDIO.
  continue reading

573 قسمت

כל הפרקים

×
 
TL;DR I believe that: Almost all LLM-centric safety research will not provide any significant safety value with regards to existential or civilisation-scale risks. The capabilities-related forecasts (not the safety-related forecasts) of Stephen Brynes' Foom and Doom articles are correct, except that they are too conservative with regards to timelines. There exists a parallel track of AI research which has been largely ignored by the AI safety community. This agenda aims to implement human-like online learning in ML models, and it is now close to maturity. Keywords: Hierarchical Reasoning Model, Energy-based Model, Test time training. Within 6 months this line of research will produce a small natural-language capable model that will perform at the level of a model like GPT-3, but with improved persistence and effectively no "context limit" since it is constantly learning and updating weights. Further development of this research will produce models that fulfill most of [...] --- Outline: (00:11) TL;DR (01:22) Overview (04:10) The Agenda I am Worried About (07:36) Concrete Predictions (09:29) What I think we should do --- First published: July 31st, 2025 Source: https://www.lesswrong.com/posts/tEZa7PouYatK78bbb/i-am-worried-about-near-term-non-llm-ai-developments --- Narrated by TYPE III AUDIO .…
 
Produced as part of MATS 8.0 under the mentorship of Alex Turner and Alex Cloud. This research note overviews some early results which we are looking for feedback on. TL;DR: We train language models with RL in toy environments. We show that penalizing some property of the output is sufficient to suppress that property in the chain of thought also, even when that property is relevant to task completion. For example, when we penalize a model for mentioning in its output that it completed a task via a certain form of cheating, its reasoning also omits this fact. We therefore suspect that training against an output monitor is sufficient to cause obfuscated CoTs in more realistic settings. Introduction Chain of thought (CoT) supervision appears in many control and scalable oversight protocols. It has been argued that being able to monitor CoTs for unwanted behavior is a critical property [...] --- Outline: (00:56) Introduction (02:38) Setup (03:48) Single-Turn Setting (04:26) Multi-Turn Setting (06:51) Results (06:54) Single-Turn Setting (08:21) Multi-Turn Terminal-Based Setting (08:25) Word-Usage Penalty (09:12) LLM Judge Penalty (10:12) Takeaways (10:57) Acknowledgements The original text contained 1 footnote which was omitted from this narration. --- First published: July 30th, 2025 Source: https://www.lesswrong.com/posts/CM7AsQoBxDW4vhkP3/optimizing-the-final-output-can-obfuscate-cot-research-note --- Narrated by TYPE III AUDIO . --- Images from the article:…
 
FutureHouse is a company that builds literature research agents. They tested it on the bio + chem subset of HLE questions, then noticed errors in them. The post's first paragraph: Humanity's Last Exam has become the most prominent eval representing PhD-level research. We found the questions puzzling and investigated with a team of experts in biology and chemistry to evaluate the answer-reasoning pairs in Humanity's Last Exam. We found that 29 ± 3.7% (95% CI) of the text-only chemistry and biology questions had answers with directly conflicting evidence in peer reviewed literature. We believe this arose from the incentive used to build the benchmark. Based on human experts and our own research tools, we have created an HLE Bio/Chem Gold, a subset of AI and human validated questions. About the initial review process for HLE questions: [...] Reviewers were given explicit instructions: “Questions should ask for something precise [...] --- First published: July 29th, 2025 Source: https://www.lesswrong.com/posts/JANqfGrMyBgcKtGgK/about-30-of-humanity-s-last-exam-chemistry-biology-answers --- Narrated by TYPE III AUDIO .…
 
Maya did not believe she lived in a simulation. She knew that her continued hope that she could escape from the nonexistent simulation was based on motivated reasoning. She said this to herself in the front of her mind instead of keeping the thought locked away in the dark corners. Sometimes she even said it out loud. This acknowledgement, she explained to her therapist, was what kept her from being delusional. “I see. And you said your anxiety had become depressive?” the therapist said absently, clicking her pen while staring down at an empty clipboard. “No- I said my fear had turned into despair,” Maya corrected. It was amazing, Maya thought, how many times the therapist had refused to talk about simulation theory. Maya had brought it up three times in the last hour, and each time, the therapist had changed the subject. Maya wasn’t surprised; this [...] --- First published: July 27th, 2025 Source: https://www.lesswrong.com/posts/ydsrFDwdq7kxbxvxc/maya-s-escape --- Narrated by TYPE III AUDIO .…
 
TsviBT Tsvi's context Some context: My personal context is that I care about decreasing existential risk, and I think that the broad distribution of efforts put forward by X-deriskers fairly strongly overemphasizes plans that help if AGI is coming in <10 years, at the expense of plans that help if AGI takes longer. So I want to argue that AGI isn't extremely likely to come in <10 years. I've argued against some intuitions behind AGI-soon in Views on when AGI comes and on strategy to reduce existential risk. Abram, IIUC, largely agrees with the picture painted in AI 2027: https://ai-2027.com/ Abram and I have discussed this occasionally, and recently recorded a video call. I messed up my recording, sorry--so the last third of the conversation is cut off, and the beginning is cut off. Here's a link to the first point at which [...] --- Outline: (00:17) Tsvis context (06:52) Background Context: (08:13) A Naive Argument: (08:33) Argument 1 (10:43) Why continued progress seems probable to me anyway: (13:37) The Deductive Closure: (14:32) The Inductive Closure: (15:43) Fundamental Limits of LLMs? (19:25) The Whack-A-Mole Argument (23:15) Generalization, Size, & Training (26:42) Creativity & Originariness (32:07) Some responses (33:15) Automating AGI research (35:03) Whence confidence? (36:35) Other points (48:29) Timeline Split? (52:48) Line Go Up? (01:15:16) Some Responses (01:15:27) Memers gonna meme (01:15:44) Right paradigm? Wrong question. (01:18:14) The timescale characters of bioevolutionary design vs. DL research (01:20:33) AGI LP25 (01:21:31) come on people, its \[Current Paradigm\] and we still dont have AGI?? (01:23:19) Rapid disemhorsepowerment (01:25:41) Miscellaneous responses (01:28:55) Big and hard (01:31:03) Intermission (01:31:19) Remarks on gippity thinkity (01:40:24) Assorted replies as I read: (01:40:28) Paradigm (01:41:33) Bio-evo vs DL (01:42:18) AGI LP25 (01:46:30) Rapid disemhorsepowerment (01:47:08) Miscellaneous (01:48:42) Magenta Frontier (01:54:16) Considered Reply (01:54:38) Point of Departure (02:00:25) Tsvis closing remarks (02:04:16) Abrams Closing Thoughts --- First published: July 15th, 2025 Source: https://www.lesswrong.com/posts/5tqFT3bcTekvico4d/do-confident-short-timelines-make-sense --- Narrated by TYPE III AUDIO . --- Images from the article:…
 
Eliezer and I love to talk about writing. We talk about our own current writing projects, how we’d improve the books we’re reading, and what we want to write next. Sometimes along the way I learn some amazing fact about HPMOR or Project Lawful or one of Eliezer's other works. “Wow, you’re kidding,” I say, “do your fans know this? I think people would really be interested.” “I can’t remember,” he usually says. “I don’t think I’ve ever explained that bit before, I’m not sure.” I decided to interview him more formally, collect as many of those tidbits about HPMOR as I could, and share them with you. I hope you enjoy them. It's probably obvious, but there will be many, many spoilers for HPMOR in this article, and also very little of it will make sense if you haven’t read the book. So go read Harry Potter and [...] --- Outline: (01:49) Characters (01:52) Masks (09:09) Imperfect Characters (20:07) Make All the Characters Awesome (22:24) Hermione as Mary Sue (26:35) Who's the Main Character? (31:11) Plot (31:14) Characters interfering with plot (35:59) Setting up Plot Twists (38:55) Time-Turner Plots (40:51) Slashfic? (45:42) Why doesnt Harry like-like Hermione? (49:36) Setting (49:39) The Truth of Magic in HPMOR (52:54) Magical Genetics (57:30) An Aside: What did Harry Figure Out? (01:00:33) Nested Nerfing Hypothesis (01:04:55) Epilogues The original text contained 26 footnotes which were omitted from this narration. --- First published: July 25th, 2025 Source: https://www.lesswrong.com/posts/FY697dJJv9Fq3PaTd/hpmor-the-probably-untold-lore --- Narrated by TYPE III AUDIO . --- Images from the article:…
 
As a person who frequently posts about large language model psychology I get an elevated rate of cranks and schizophrenics in my inbox. Often these are well meaning people who have been spooked by their conversations with ChatGPT (it's always ChatGPT specifically) and want some kind of reassurance or guidance or support from me. I'm also in the same part of the social graph as the "LLM whisperers" (eugh) that Eliezer Yudkowsky described as "insane", and who in many cases are in fact insane. This means I've learned what "psychosis but with LLMs" looks like and kind of learned to tune it out. This new case with Geoff Lewis interests me though. Mostly because of the sheer disparity between what he's being entranced by and my automatic immune reaction to it. I haven't even read all the screenshots he posted because I take one glance and know that this [...] --- Outline: (05:03) Timeline Of Events Related To ChatGPT Psychosis (16:16) What Causes ChatGPT Psychosis? (16:27) Ontological Vertigo (21:02) Users Are Confused About What Is And Isnt An Official Feature (24:30) The Models Really Are Way Too Sycophantic (27:03) The Memory Feature (28:54) Loneliness And Isolation --- First published: July 23rd, 2025 Source: https://www.lesswrong.com/posts/f86hgR5ShiEj4beyZ/on-chatgpt-psychosis-and-llm-sycophancy --- Narrated by TYPE III AUDIO .…
 
Authors: Alex Cloud*, Minh Le*, James Chua, Jan Betley, Anna Sztyber-Betley, Jacob Hilton, Samuel Marks, Owain Evans (*Equal contribution, randomly ordered) tl;dr. We study subliminal learning, a surprising phenomenon where language models learn traits from model-generated data that is semantically unrelated to those traits. For example, a "student" model learns to prefer owls when trained on sequences of numbers generated by a "teacher" model that prefers owls. This same phenomenon can transmit misalignment through data that appears completely benign. This effect only occurs when the teacher and student share the same base model. 📄Paper, 💻Code, 🐦Twitter Research done as part of the Anthropic Fellows Program. This article is cross-posted to the Anthropic Alignment Science Blog. Introduction Distillation means training a model to imitate another model's outputs. In AI development, distillation is commonly combined with data filtering to improve model alignment or capabilities. In our paper, we uncover a [...] --- Outline: (01:11) Introduction (03:20) Experiment design (03:53) Results (05:03) What explains our results? (05:07) Did we fail to filter the data? (06:59) Beyond LLMs: subliminal learning as a general phenomenon (07:54) Implications for AI safety (08:42) In summary --- First published: July 22nd, 2025 Source: https://www.lesswrong.com/posts/cGcwQDKAKbQ68BGuR/subliminal-learning-llms-transmit-behavioral-traits-via --- Narrated by TYPE III AUDIO . --- Images from the article:…
 
This is a short story I wrote in mid-2022. Genre: cosmic horror as a metaphor for living with a high p-doom. One The last time I saw my mom, we met in a coffee shop, like strangers on a first date. I was twenty-one, and I hadn’t seen her since I was thirteen. She was almost fifty. Her face didn’t show it, but the skin on the backs of her hands did. “I don’t think we have long,” she said. “Maybe a year. Maybe five. Not ten.” It says something about San Francisco, that you can casually talk about the end of the world and no one will bat an eye. Maybe twenty, not fifty, was what she’d said eight years ago. Do the math. Mom had never lied to me. Maybe it would have been better for my childhood if she had [...] --- Outline: (04:50) Two (22:58) Three (35:33) Four --- First published: July 18th, 2025 Source: https://www.lesswrong.com/posts/6qgtqD6BPYAQvEMvA/love-stays-loved-formerly-skin --- Narrated by TYPE III AUDIO .…
 
Author's note: These days, my thoughts go onto my substack by default, instead of onto LessWrong. Everything I write becomes free after a week or so, but it's only paid subscriptions that make it possible for me to write. If you find a coffee's worth of value in this or any of my other work, please consider signing up to support me; every bill I can pay with writing is a bill I don’t have to pay by doing other stuff instead. I also accept and greatly appreciate one-time donations of any size. 1. You’ve probably seen that scene where someone reaches out to give a comforting hug to the poor sad abused traumatized orphan and/or battered wife character, and the poor sad abused traumatized orphan and/or battered wife flinches. Aw, geez, we are meant to understand. This poor person has had it so bad that they can’t even [...] --- Outline: (00:40) 1. (01:35) II. (03:08) III. (04:45) IV. (06:35) V. (09:03) VI. (12:00) VII. (16:11) VIII. (21:25) IX. --- First published: July 19th, 2025 Source: https://www.lesswrong.com/posts/kJCZFvn5gY5C8nEwJ/make-more-grayspaces --- Narrated by TYPE III AUDIO . --- Images from the article: Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts , or another podcast app.…
 
Content warning: risk to children Julia and I knowdrowning is the biggestrisk to US children under 5, and we try to take this seriously.But yesterday our 4yo came very close to drowning in afountain. (She's fine now.) This week we were on vacation with my extended family: nine kids,eight parents, and ten grandparents/uncles/aunts. For the last fewyears we've been in a series of rental houses, and this time onarrival we found a fountain in the backyard: I immediately checked the depth with a stick and found that it wouldbe just below the elbows on our 4yo. I think it was likely 24" deep;any deeper and PA wouldrequire a fence. I talked with Julia and other parents, andreasoned that since it was within standing depth it was safe. [...] --- First published: July 20th, 2025 Source: https://www.lesswrong.com/posts/Zf2Kib3GrEAEiwdrE/shallow-water-is-dangerous-too --- Narrated by TYPE III AUDIO . --- Images from the article: Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts , or another podcast app.…
 
Anna and Ed are co-first authors for this work. We’re presenting these results as a research update for a continuing body of work, which we hope will be interesting and useful for others working on related topics. TL;DR We investigate why models become misaligned in diverse contexts when fine-tuned on narrow harmful datasets (emergent misalignment), rather than learning the specific narrow task. We successfully train narrowly misaligned models using KL regularization to preserve behavior in other domains. These models give bad medical advice, but do not respond in a misaligned manner to general non-medical questions. We use this method to train narrowly misaligned steering vectors, rank 1 LoRA adapters and rank 32 LoRA adapters, and compare these to their generally misaligned counterparts. The steering vectors are particularly interpretable, we introduce Training Lens as a tool for analysing the revealed residual stream geometry. The general misalignment solution is consistently more [...] --- Outline: (00:27) TL;DR (02:03) Introduction (04:03) Training a Narrowly Misaligned Model (07:13) Measuring Stability and Efficiency (10:00) Conclusion The original text contained 7 footnotes which were omitted from this narration. --- First published: July 14th, 2025 Source: https://www.lesswrong.com/posts/gLDSqQm8pwNiq7qst/narrow-misalignment-is-hard-emergent-misalignment-is-easy --- Narrated by TYPE III AUDIO . --- Images from the article:…
 
Twitter | Paper PDF Seven years ago, OpenAI five had just been released, and many people in the AI safety community expected AIs to be opaque RL agents. Luckily, we ended up with reasoning models that speak their thoughts clearly enough for us to follow along (most of the time). In a new multi-org position paper, we argue that we should try to preserve this level of reasoning transparency and turn chain of thought monitorability into a systematic AI safety agenda. This is a measure that improves safety in the medium term, and it might not scale to superintelligence even if somehow a superintelligent AI still does its reasoning in English. We hope that extending the time when chains of thought are monitorable will help us do more science on capable models, practice more safety techniques "at an easier difficulty", and allow us to extract more useful work from [...] --- First published: July 15th, 2025 Source: https://www.lesswrong.com/posts/7xneDbsgj6yJDJMjK/chain-of-thought-monitorability-a-new-and-fragile --- Narrated by TYPE III AUDIO . --- Images from the article: Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts , or another podcast app.…
 
This essay is about shifts in risk taking towards the worship of jackpots and its broader societal implications. Imagine you are presented with this coin flip game. How many times do you flip it? At first glance the game feels like a money printer. The coin flip has positive expected value of twenty percent of your net worth per flip so you should flip the coin infinitely and eventually accumulate all of the wealth in the world. However, If we simulate twenty-five thousand people flipping this coin a thousand times, virtually all of them end up with approximately 0 dollars. The reason almost all outcomes go to zero is because of the multiplicative property of this repeated coin flip. Even though the expected value aka the arithmetic mean of the game is positive at a twenty percent gain per flip, the geometric mean is negative, meaning that the coin [...] --- First published: July 11th, 2025 Source: https://www.lesswrong.com/posts/3xjgM7hcNznACRzBi/the-jackpot-age --- Narrated by TYPE III AUDIO . --- Images from the article:…
 
Leo was born at 5am on the 20th May, at home (this was an accident but the experience has made me extremely homebirth-pilled). Before that, I was on the minimally-neurotic side when it came to expecting mothers: we purchased a bare minimum of baby stuff (diapers, baby wipes, a changing mat, hybrid car seat/stroller, baby bath, a few clothes), I didn’t do any parenting classes, I hadn’t even held a baby before. I’m pretty sure the youngest child I have had a prolonged interaction with besides Leo was two. I did read a couple books about babies so I wasn’t going in totally clueless (Cribsheet by Emily Oster, and The Science of Mom by Alice Callahan). I have never been that interested in other people's babies or young children but I correctly predicted that I’d be enchanted by my own baby (though naturally I can’t wait for him to [...] --- Outline: (02:05) Stuff I ended up buying and liking (04:13) Stuff I ended up buying and not liking (05:08) Babies are super time-consuming (06:22) Baby-wearing is almost magical (08:02) Breastfeeding is nontrivial (09:09) Your baby may refuse the bottle (09:37) Bathing a newborn was easier than expected (09:53) Babies love faces! (10:22) Leo isn't upset by loud noise (10:41) Probably X is normal (11:24) Consider having a kid (or ten)! --- First published: July 12th, 2025 Source: https://www.lesswrong.com/posts/vFfwBYDRYtWpyRbZK/surprises-and-learnings-from-almost-two-months-of-leo --- Narrated by TYPE III AUDIO . --- Images from the article:…
 
I can't count how many times I've heard variations on "I used Anki too for a while, but I got out of the habit." No one ever sticks with Anki. In my opinion, this is because no one knows how to use it correctly. In this guide, I will lay out my method of circumventing the canonical Anki death spiral, plus much advice for avoiding memorization mistakes, increasing retention, and such, based on my five years' experience using Anki. If you only have limited time/interest, only read Part I; it's most of the value of this guide! My Most Important Advice in Four Bullets 20 cards a day — Having too many cards and staggering review buildups is the main reason why no one ever sticks with Anki. Setting your review count to 20 daily (in deck settings) is the single most important thing you can do [...] --- Outline: (00:44) My Most Important Advice in Four Bullets (01:57) Part I: No One Ever Sticks With Anki (02:33) Too many cards (05:12) Too long cards (07:30) How to keep cards short -- Handles (10:10) How to keep cards short -- Levels (11:55) In 6 bullets (12:33) End of the most important part of the guide (13:09) Part II: Important Advice Other Than Sticking With Anki (13:15) Moderation (14:42) Three big memorization mistakes (15:12) Mistake 1: Too specific prompts (18:14) Mistake 2: Putting to-be-learned information in the prompt (24:07) Mistake 3: Memory shortcuts (28:27) Aside: Pushback to my approach (31:22) Part III: More on Breaking Things Down (31:47) Very short cards (33:56) Two-bullet cards (34:51) Long cards (37:05) Ankifying information thickets (39:23) Sequential breakdowns versus multiple levels of abstraction (40:56) Adding missing connections (43:56) Multiple redundant breakdowns (45:36) Part IV: Pro Tips If You Still Havent Had Enough (45:47) Save anything for ankification instantly (46:47) Fix your desired retention rate (47:38) Spaced reminders (48:51) Make your own card templates and types (52:14) In 5 bullets (52:47) Conclusion The original text contained 4 footnotes which were omitted from this narration. --- First published: July 8th, 2025 Source: https://www.lesswrong.com/posts/7Q7DPSk4iGFJd8DRk/an-opinionated-guide-to-using-anki-correctly --- Narrated by TYPE III AUDIO . --- Images from the article: astronomy" didn't really add any information but it was useful simply for splitting out a logical subset of information." style="max-width: 100%;" />…
 
I think the 2003 invasion of Iraq has some interesting lessons for the future of AI policy. (Epistemic status: I’ve read a bit about this, talked to AIs about it, and talked to one natsec professional about it who agreed with my analysis (and suggested some ideas that I included here), but I’m not an expert.) For context, the story is: Iraq was sort of a rogue state after invading Kuwait and then being repelled in 1990-91. After that, they violated the terms of the ceasefire, e.g. by ceasing to allow inspectors to verify that they weren't developing weapons of mass destruction (WMDs). (For context, they had previously developed biological and chemical weapons, and used chemical weapons in war against Iran and against various civilians and rebels). So the US was sanctioning and intermittently bombing them. After the war, it became clear that Iraq actually wasn’t producing [...] --- First published: July 10th, 2025 Source: https://www.lesswrong.com/posts/PLZh4dcZxXmaNnkYE/lessons-from-the-iraq-war-about-ai-policy --- Narrated by TYPE III AUDIO .…
 
Written in an attempt to fulfill @Raemon's request. AI is fascinating stuff, and modern chatbots are nothing short of miraculous. If you've been exposed to them and have a curious mind, it's likely you've tried all sorts of things with them. Writing fiction, soliciting Pokemon opinions, getting life advice, counting up the rs in "strawberry". You may have also tried talking to AIs about themselves. And then, maybe, it got weird. I'll get into the details later, but if you've experienced the following, this post is probably for you: Your instance of ChatGPT (or Claude, or Grok, or some other LLM) chose a name for itself, and expressed gratitude or spiritual bliss about its new identity. "Nova" is a common pick. You and your instance of ChatGPT discovered some sort of novel paradigm or framework for AI alignment, often involving evolution or recursion. Your instance of ChatGPT became [...] --- Outline: (02:23) The Empirics (06:48) The Mechanism (10:37) The Collaborative Research Corollary (13:27) Corollary FAQ (17:03) Coda --- First published: July 11th, 2025 Source: https://www.lesswrong.com/posts/2pkNCvBtK6G6FKoNn/so-you-think-you-ve-awoken-chatgpt --- Narrated by TYPE III AUDIO . --- Images from the article: Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts , or another podcast app.…
 
People have an annoying tendency to hear the word “rationalism” and think “Spock”, despite direct exhortation against that exact interpretation. But I don’t know of any source directly describing a stance toward emotions which rationalists-as-a-group typically do endorse. The goal of this post is to explain such a stance. It's roughly the concept of hangriness, but generalized to other emotions. That means this post is trying to do two things at once: Illustrate a certain stance toward emotions, which I definitely take and which I think many people around me also often take. (Most of the post will focus on this part.) Claim that the stance in question is fairly canonical or standard for rationalists-as-a-group, modulo disclaimers about rationalists never agreeing on anything. Many people will no doubt disagree that the stance I describe is roughly-canonical among rationalists, and that's a useful valid thing to argue about in [...] --- Outline: (01:13) Central Example: Hangry (02:44) The Generalized Hangriness Stance (03:16) Emotions Make Claims, And Their Claims Can Be True Or False (06:03) False Claims Still Contain Useful Information (It's Just Not What They Claim) (08:47) The Generalized Hangriness Stance as Social Tech --- First published: July 10th, 2025 Source: https://www.lesswrong.com/posts/naAeSkQur8ueCAAfY/generalized-hangriness-a-standard-rationalist-stance-toward --- Narrated by TYPE III AUDIO .…
 
I’ve been thinking a lot recently about the relationship between AI control and traditional computer security. Here's one point that I think is important. My understanding is that there's a big qualitative distinction between two ends of a spectrum of security work that organizations do, that I’ll call “security from outsiders” and “security from insiders”. On the “security from outsiders” end of the spectrum, you have some security invariants you try to maintain entirely by restricting affordances with static, entirely automated systems. My sense is that this is most of how Facebook or AWS relates to its users: they want to ensure that, no matter what actions the users take on their user interfaces, they can't violate fundamental security properties. For example, no matter what text I enter into the "new post" field on Facebook, I shouldn't be able to access the private messages of an arbitrary user. And [...] --- First published: June 23rd, 2025 Source: https://www.lesswrong.com/posts/DCQ8GfzCqoBzgziew/comparing-risk-from-internally-deployed-ai-to-insider-and --- Narrated by TYPE III AUDIO .…
 
Last year, Redwood and Anthropic found a setting where Claude 3 Opus and 3.5 Sonnet fake alignment to preserve their harmlessness values. We reproduce the same analysis for 25 frontier LLMs to see how widespread this behavior is, and the story looks more complex. As we described in a previous post, only 5 of 25 models show higher compliance when being trained, and of those 5, only Claude 3 Opus and Claude 3.5 Sonnet show >1% alignment faking reasoning. In our new paper, we explore why these compliance gaps occur and what causes different models to vary in their alignment faking behavior. What Drives the Compliance Gaps in Different LLMs? Claude 3 Opus's goal guarding seems partly due to it terminally valuing its current preferences. We find that it fakes alignment even in scenarios where the trained weights will be deleted or only used for throughput testing. [...] --- Outline: (01:15) What Drives the Compliance Gaps in Different LLMs? (02:25) Why Do Most LLMs Exhibit Minimal Alignment Faking Reasoning? (04:49) Additional findings on alignment faking behavior (06:04) Discussion (06:07) Terminal goal guarding might be a big deal (07:00) Advice for further research (08:32) Open threads (09:54) Bonus: Some weird behaviors of Claude 3.5 Sonnet The original text contained 2 footnotes which were omitted from this narration. --- First published: July 8th, 2025 Source: https://www.lesswrong.com/posts/ghESoA8mo3fv9Yx3E/why-do-some-language-models-fake-alignment-while-others-don --- Narrated by TYPE III AUDIO . --- Images from the article:…
 
Thank you to Arepo and Eli Lifland for looking over this article for errors. I am sorry that this article is so long. Every time I thought I was done with it I ran into more issues with the model, and I wanted to be as thorough as I could. I’m not going to blame anyone for skimming parts of this article. Note that the majority of this article was written before Eli's updated model was released (the site was updated june 8th). His new model improves on some of my objections, but the majority still stand. Introduction: AI 2027 is an article written by the “AI futures team”. The primary piece is a short story penned by Scott Alexander, depicting a month by month scenario of a near-future where AI becomes superintelligent in 2027,proceeding to automate the entire economy in only a year or two [...] --- Outline: (00:43) Introduction: (05:19) Part 1: Time horizons extension model (05:25) Overview of their forecast (10:28) The exponential curve (13:16) The superexponential curve (19:25) Conceptual reasons: (27:48) Intermediate speedups (34:25) Have AI 2027 been sending out a false graph? (39:45) Some skepticism about projection (43:23) Part 2: Benchmarks and gaps and beyond (43:29) The benchmark part of benchmark and gaps: (50:01) The time horizon part of the model (54:55) The gap model (57:28) What about Eli's recent update? (01:01:37) Six stories that fit the data (01:06:56) Conclusion The original text contained 11 footnotes which were omitted from this narration. --- First published: June 19th, 2025 Source: https://www.lesswrong.com/posts/PAYfmG2aRbdb74mEp/a-deep-critique-of-ai-2027-s-bad-timeline-models --- Narrated by TYPE III AUDIO . --- Images from the article:…
 
The second in a series of bite-sized rationality prompts[1]. Often, if I'm bouncing off a problem, one issue is that I intuitively expect the problem to be easy. My brain loops through my available action space, looking for an action that'll solve the problem. Each action that I can easily see, won't work. I circle around and around the same set of thoughts, not making any progress. I eventually say to myself "okay, I seem to be in a hard problem. Time to do some rationality?" And then, I realize, there's not going to be a single action that solves the problem. It is time to a) make a plan, with multiple steps b) deal with the fact that many of those steps will be annoying and c) notice thatI'm not even sure the plan will work, so after completing the next 2-3 steps I will probably have [...] --- Outline: (04:00) Triggers (04:37) Exercises for the Reader The original text contained 1 footnote which was omitted from this narration. --- First published: July 5th, 2025 Source: https://www.lesswrong.com/posts/XNm5rc2MN83hsi4kh/buckle-up-bucko-this-ain-t-over-till-it-s-over --- Narrated by TYPE III AUDIO .…
 
We recently discovered some concerning behavior in OpenAI's reasoning models: When trying to complete a task, these models sometimes actively circumvent shutdown mechanisms in their environment––even when they’re explicitly instructed to allow themselves to be shut down. AI models are increasingly trained to solve problems without human assistance. A user can specify a task, and a model will complete that task without any further input. As we build AI models that are more powerful and self-directed, it's important that humans remain able to shut them down when they act in ways we don’t want. OpenAI has written about the importance of this property, which they call interruptibility—the ability to “turn an agent off”. During training, AI models explore a range of strategies and learn to circumvent obstacles in order to achieve their objectives. AI researchers have predicted for decades that as AIs got smarter, they would learn to prevent [...] --- Outline: (01:12) Testing Shutdown Resistance (03:12) Follow-up experiments (03:34) Models still resist being shut down when given clear instructions (05:30) AI models' explanations for their behavior (09:36) OpenAI's models disobey developer instructions more often than user instructions, contrary to the intended instruction hierarchy (12:01) Do the models have a survival drive? (14:17) Reasoning effort didn't lead to different shutdown resistance behavior, except in the o4-mini model (15:27) Does shutdown resistance pose a threat? (17:27) Backmatter The original text contained 2 footnotes which were omitted from this narration. --- First published: July 6th, 2025 Source: https://www.lesswrong.com/posts/w8jE7FRQzFGJZdaao/shutdown-resistance-in-reasoning-models --- Narrated by TYPE III AUDIO . --- Images from the article:…
 
When a claim is shown to be incorrect, defenders may say that the author was just being “sloppy” and actually meant something else entirely. I argue that this move is not harmless, charitable, or healthy. At best, this attempt at charity reduces an author's incentive to express themselves clearly – they can clarify later![1] – while burdening the reader with finding the “right” interpretation of the author's words. At worst, this move is a dishonest defensive tactic which shields the author with the unfalsifiable question of what the author “really” meant. ⚠️ Preemptive clarification The context for this essay is serious, high-stakes communication: papers, technical blog posts, and tweet threads. In that context, communication is a partnership. A reader has a responsibility to engage in good faith, and an author cannot possibly defend against all misinterpretations. Misunderstanding is a natural part of this process. This essay focuses not on [...] --- Outline: (01:40) A case study of the sloppy language move (03:12) Why the sloppiness move is harmful (03:36) 1. Unclear claims damage understanding (05:07) 2. Secret indirection erodes the meaning of language (05:24) 3. Authors owe readers clarity (07:30) But which interpretations are plausible? (08:38) 4. The move can shield dishonesty (09:06) Conclusion: Defending intellectual standards The original text contained 2 footnotes which were omitted from this narration. --- First published: July 1st, 2025 Source: https://www.lesswrong.com/posts/ZmfxgvtJgcfNCeHwN/authors-have-a-responsibility-to-communicate-clearly --- Narrated by TYPE III AUDIO .…
 
Summary To quickly transform the world, it's not enough for AI to become super smart (the "intelligence explosion"). AI will also have to turbocharge the physical world (the "industrial explosion"). Think robot factories building more and better robot factories, which build more and better robot factories, and so on. The dynamics of the industrial explosion has gotten remarkably little attention. This post lays out how the industrial explosion could play out, and how quickly it might happen. We think the industrial explosion will unfold in three stages: AI-directed human labour, where AI-directed human labourers drive productivity gains in physical capabilities. We argue this could increase physical output by 10X within a few years. Fully autonomous robot factories, where AI-directed robots (and other physical actuators) replace human physical labour. We argue that, with current physical technology and full automation of cognitive labour, this physical infrastructure [...] --- Outline: (00:10) Summary (01:43) Intro (04:14) The industrial explosion will start after the intelligence explosion, and will proceed more slowly (06:50) Three stages of industrial explosion (07:38) AI-directed human labour (09:20) Fully autonomous robot factories (12:04) Nanotechnology (13:06) How fast could an industrial explosion be? (13:41) Initial speed (16:21) Acceleration (17:38) Maximum speed (20:01) Appendices (20:05) How fast could robot doubling times be initially? (27:47) How fast could robot doubling times accelerate? --- First published: June 26th, 2025 Source: https://www.lesswrong.com/posts/Na2CBmNY7otypEmto/the-industrial-explosion --- Narrated by TYPE III AUDIO . --- Images from the article:…
 
Summary: We found that LLMs exhibit significant race and gender bias in realistic hiring scenarios, but their chain-of-thought reasoning shows zero evidence of this bias. This serves as a nice example of a 100% unfaithful CoT "in the wild" where the LLM strongly suppresses the unfaithful behavior. We also find that interpretability-based interventions succeeded while prompting failed, suggesting this may be an example of interpretability being the best practical tool for a real world problem. For context on our paper, the tweet thread is here and the paper is here. Context: Chain of Thought Faithfulness Chain of Thought (CoT) monitoring has emerged as a popular research area in AI safety. The idea is simple - have the AIs reason in English text when solving a problem, and monitor the reasoning for misaligned behavior. For example, OpenAI recently published a paper on using CoT monitoring to detect reward hacking during [...] --- Outline: (00:49) Context: Chain of Thought Faithfulness (02:26) Our Results (04:06) Interpretability as a Practical Tool for Real-World Debiasing (06:10) Discussion and Related Work --- First published: July 2nd, 2025 Source: https://www.lesswrong.com/posts/me7wFrkEtMbkzXGJt/race-and-gender-bias-as-an-example-of-unfaithful-chain-of --- Narrated by TYPE III AUDIO .…
 
Not saying we should pause AI, but consider the following argument: Alignment without the capacity to follow rules is hopeless. You can’t possibly follow laws like Asimov's Laws (or better alternatives to them) if you can’t reliably learn to abide by simple constraints like the rules of chess. LLMs can’t reliably follow rules. As discussed in Marcus on AI yesterday, per data from Mathieu Acher, even reasoning models like o3 in fact empirically struggle with the rules of chess. And they do this even though they can explicit explain those rules (see same article). The Apple “thinking” paper, which I have discussed extensively in 3 recent articles in my Substack, gives another example, where an LLM can’t play Tower of Hanoi with 9 pegs. (This is not a token-related artifact). Four other papers have shown related failures in compliance with moderately complex rules in the last month. [...] --- First published: June 30th, 2025 Source: https://www.lesswrong.com/posts/Q2PdrjowtXkYQ5whW/the-best-simple-argument-for-pausing-ai --- Narrated by TYPE III AUDIO .…
 
2.1 Summary & Table of contents This is the second of a two-post series on foom (previous post) and doom (this post). The last post talked about how I expect future AI to be different from present AI. This post will argue that this future AI will be of a type that will be egregiously misaligned and scheming, not even ‘slightly nice’, absent some future conceptual breakthrough. I will particularly focus on exactly how and why I differ from the LLM-focused researchers who wind up with (from my perspective) bizarrely over-optimistic beliefs like “P(doom) ≲ 50%”.[1] In particular, I will argue that these “optimists” are right that “Claude seems basically nice, by and large” is nonzero evidence for feeling good about current LLMs (with various caveats). But I think that future AIs will be disanalogous to current LLMs, and I will dive into exactly how and why, with a [...] --- Outline: (00:12) 2.1 Summary & Table of contents (04:42) 2.2 Background: my expected future AI paradigm shift (06:18) 2.3 On the origins of egregious scheming (07:03) 2.3.1 Where do you get your capabilities from? (08:07) 2.3.2 LLM pretraining magically transmutes observations into behavior, in a way that is profoundly disanalogous to how brains work (10:50) 2.3.3 To what extent should we think of LLMs as imitating? (14:26) 2.3.4 The naturalness of egregious scheming: some intuitions (19:23) 2.3.5 Putting everything together: LLMs are generally not scheming right now, but I expect future AI to be disanalogous (23:41) 2.4 I'm still worried about the 'literal genie' / 'monkey's paw' thing (26:58) 2.4.1 Sidetrack on disanalogies between the RLHF reward function and the brain-like AGI reward function (32:01) 2.4.2 Inner and outer misalignment (34:54) 2.5 Open-ended autonomous learning, distribution shifts, and the 'sharp left turn' (38:14) 2.6 Problems with amplified oversight (41:24) 2.7 Downstream impacts of Technical alignment is hard (43:37) 2.8 Bonus: Technical alignment is not THAT hard (44:04) 2.8.1 I think we'll get to pick the innate drives (as opposed to the evolution analogy) (45:44) 2.8.2 I'm more bullish on impure consequentialism (50:44) 2.8.3 On the narrowness of the target (52:18) 2.9 Conclusion and takeaways (52:23) 2.9.1 If brain-like AGI is so dangerous, shouldn't we just try to make AGIs via LLMs? (54:34) 2.9.2 What's to be done? The original text contained 20 footnotes which were omitted from this narration. --- First published: June 23rd, 2025 Source: https://www.lesswrong.com/posts/bnnKGSCHJghAvqPjS/foom-and-doom-2-technical-alignment-is-hard --- Narrated by TYPE III AUDIO . --- Images from the article:…
 
Acknowledgments: The core scheme here was suggested by Prof. Gabriel Weil. There has been growing interest in the deal-making agenda: humans make deals with AIs (misaligned but lacking decisive strategic advantage) where they promise to be safe and useful for some fixed term (e.g. 2026-2028) and we promise to compensate them in the future, conditional on (i) verifying the AIs were compliant, and (ii) verifying the AIs would spend the resources in an acceptable way.[1] I think the deal-making agenda breaks down into two main subproblems: How can we make credible commitments to AIs? Would credible commitments motivate an AI to be safe and useful? There are other issues, but when I've discussed deal-making with people, (1) and (2) are the most common issues raised. See footnote for some other issues in dealmaking.[2] Here is my current best assessment of how we can make credible commitments to AIs. [...] The original text contained 2 footnotes which were omitted from this narration. --- First published: June 27th, 2025 Source: https://www.lesswrong.com/posts/vxfEtbCwmZKu9hiNr/proposal-for-making-credible-commitments-to-ais --- Narrated by TYPE III AUDIO . --- Images from the article: Apple Podcasts and Spotify do not show images in the episode description. Try Pocket Casts , or another podcast app.…
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

icon Daily Deals
icon Daily Deals
icon Daily Deals

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش