“How Well Does RL Scale?” by Toby_Ord
Manage episode 516788577 series 3364758
محتوای ارائه شده توسط LessWrong. تمام محتوای پادکست شامل قسمتها، گرافیکها و توضیحات پادکست مستقیماً توسط LessWrong یا شریک پلتفرم پادکست آنها آپلود و ارائه میشوند. اگر فکر میکنید شخصی بدون اجازه شما از اثر دارای حق نسخهبرداری شما استفاده میکند، میتوانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
This is the latest in a series of essays on AI Scaling.
You can find the others on my site.
Summary: RL-training for LLMs scales surprisingly poorly. Most of its gains are from allowing LLMs to productively use longer chains of thought, allowing them to think longer about a problem. There is some improvement for a fixed length of answer, but not enough to drive AI progress. Given the scaling up of pre-training compute also stalled, we'll see less AI progress via compute scaling than you might have thought, and more of it will come from inference scaling (which has different effects on the world). That lengthens timelines and affects strategies for AI governance and safety.
The current era of improving AI capabilities using reinforcement learning (from verifiable rewards) involves two key types of scaling:
---
Outline:
(09:46) How do these compare to pre-training scaling?
(14:16) Conclusion
---
First published:
October 22nd, 2025
Source:
https://www.lesswrong.com/posts/xpj6KhDM9bJybdnEe/how-well-does-rl-scale
---
Narrated by TYPE III AUDIO.
---
…
continue reading
You can find the others on my site.
Summary: RL-training for LLMs scales surprisingly poorly. Most of its gains are from allowing LLMs to productively use longer chains of thought, allowing them to think longer about a problem. There is some improvement for a fixed length of answer, but not enough to drive AI progress. Given the scaling up of pre-training compute also stalled, we'll see less AI progress via compute scaling than you might have thought, and more of it will come from inference scaling (which has different effects on the world). That lengthens timelines and affects strategies for AI governance and safety.
The current era of improving AI capabilities using reinforcement learning (from verifiable rewards) involves two key types of scaling:
- Scaling the amount of compute used for RL during training
- Scaling [...]
---
Outline:
(09:46) How do these compare to pre-training scaling?
(14:16) Conclusion
---
First published:
October 22nd, 2025
Source:
https://www.lesswrong.com/posts/xpj6KhDM9bJybdnEe/how-well-does-rl-scale
---
Narrated by TYPE III AUDIO.
---
662 قسمت