Artwork

محتوای ارائه شده توسط Nicolay Gerold. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Nicolay Gerold یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

#032 Improving Documentation Quality for RAG Systems

46:36
 
اشتراک گذاری
 

Manage episode 451267457 series 3585930
محتوای ارائه شده توسط Nicolay Gerold. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Nicolay Gerold یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Documentation quality is the silent killer of RAG systems. A single ambiguous sentence might corrupt an entire set of responses. But the hardest part isn't fixing errors - it's finding them.

Today we are talking to Max Buckley on how to find and fix these errors.

Max works at Google and has built a lot of interesting experiments with LLMs on using them to improve knowledge bases for generation.

We talk about identifying ambiguities, fixing errors, creating improvement loops in the documents and a lot more.

Some Insights:

  • A single ambiguous sentence can systematically corrupt an entire knowledge base's responses. Fixing these "documentation poisons" often requires minimal changes but identifying them is challenging.
  • Large organizations develop their own linguistic ecosystems that evolve over time. This creates unique challenges for both embedding models and retrieval systems that need to bridge external and internal vocabularies.
  • Multiple feedback loops are crucial - expert testing, user feedback, and system monitoring each catch different types of issues.

Max Buckley: (All opinions are his own and not of Google)

Nicolay Gerold:

00:00 Understanding LLM Hallucinations 00:02 Challenges with Temporal Inconsistencies 00:43 Issues with Document Structure and Terminology 01:05 Introduction to Retrieval Augmented Generation (RAG) 01:49 Interview with Max Buckley 02:27 Anthropic's Approach to Document Chunking 02:55 Contextualizing Chunks for Better Retrieval 06:29 Challenges in Chunking and Search 07:35 LLMs in Internal Knowledge Management 08:45 Identifying and Fixing Documentation Errors 10:58 Using LLMs for Error Detection 15:35 Improving Documentation with User Feedback 24:42 Running Processes on Retrieved Context 25:19 Challenges of Terminology Consistency 26:07 Handling Definitions and Glossaries 30:10 Addressing Context Misinterpretation 31:13 Improving Documentation Quality 36:00 Future of AI and Search Technologies 42:29 Ensuring Documentation Readiness for AI

  continue reading

63 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 451267457 series 3585930
محتوای ارائه شده توسط Nicolay Gerold. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Nicolay Gerold یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Documentation quality is the silent killer of RAG systems. A single ambiguous sentence might corrupt an entire set of responses. But the hardest part isn't fixing errors - it's finding them.

Today we are talking to Max Buckley on how to find and fix these errors.

Max works at Google and has built a lot of interesting experiments with LLMs on using them to improve knowledge bases for generation.

We talk about identifying ambiguities, fixing errors, creating improvement loops in the documents and a lot more.

Some Insights:

  • A single ambiguous sentence can systematically corrupt an entire knowledge base's responses. Fixing these "documentation poisons" often requires minimal changes but identifying them is challenging.
  • Large organizations develop their own linguistic ecosystems that evolve over time. This creates unique challenges for both embedding models and retrieval systems that need to bridge external and internal vocabularies.
  • Multiple feedback loops are crucial - expert testing, user feedback, and system monitoring each catch different types of issues.

Max Buckley: (All opinions are his own and not of Google)

Nicolay Gerold:

00:00 Understanding LLM Hallucinations 00:02 Challenges with Temporal Inconsistencies 00:43 Issues with Document Structure and Terminology 01:05 Introduction to Retrieval Augmented Generation (RAG) 01:49 Interview with Max Buckley 02:27 Anthropic's Approach to Document Chunking 02:55 Contextualizing Chunks for Better Retrieval 06:29 Challenges in Chunking and Search 07:35 LLMs in Internal Knowledge Management 08:45 Identifying and Fixing Documentation Errors 10:58 Using LLMs for Error Detection 15:35 Improving Documentation with User Feedback 24:42 Running Processes on Retrieved Context 25:19 Challenges of Terminology Consistency 26:07 Handling Definitions and Glossaries 30:10 Addressing Context Misinterpretation 31:13 Improving Documentation Quality 36:00 Future of AI and Search Technologies 42:29 Ensuring Documentation Readiness for AI

  continue reading

63 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش