Artwork

محتوای ارائه شده توسط Lukas Biewald. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Lukas Biewald یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

The Startup Powering The Data Behind AGI

56:15
 
اشتراک گذاری
 

Manage episode 506743338 series 3011550
محتوای ارائه شده توسط Lukas Biewald. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Lukas Biewald یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

In this episode of Gradient Dissent, Lukas Biewald talks with the CEO & founder of Surge AI, the billion-dollar company quietly powering the next generation of frontier LLMs. They discuss Surge's origin story, why traditional data labeling is broken, and how their research-focused approach is reshaping how models are trained.

You’ll hear why inter-annotator agreement fails in high-complexity tasks like poetry and math, why synthetic data is often overrated, and how Surge builds rich RL environments to stress-test agentic reasoning. They also go deep on what kinds of data will be critical to future progress in AI—from scientific discovery to multimodal reasoning and personalized alignment.

It’s a rare, behind-the-scenes look into the world of high-quality data generation at scale—straight from the team most frontier labs trust to get it right.

Timestamps:

00:00 – Intro: Who is Edwin Chen?

03:40 – The problem with early data labeling systems

06:20 – Search ranking, clickbait, and product principles

10:05 – Why Surge focused on high-skill, high-quality labeling

13:50 – From Craigslist workers to a billion-dollar business

16:40 – Scaling without funding and avoiding Silicon Valley status games

21:15 – Why most human data platforms lack real tech

25:05 – Detecting cheaters, liars, and low-quality labelers

28:30 – Why inter-annotator agreement is a flawed metric

32:15 – What makes a great poem? Not checkboxes

36:40 – Measuring subjective quality rigorously

40:00 – What types of data are becoming more important

44:15 – Scientific collaboration and frontier research data

47:00 – Multimodal data, Argentinian coding, and hyper-specificity

50:10 – What's wrong with LMSYS and benchmark hacking

53:20 – Personalization and taste in model behavior

56:00 – Synthetic data vs. high-quality human data

Follow Weights & Biases:

https://twitter.com/weights_biases

https://www.linkedin.com/company/wandb

  continue reading

128 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 506743338 series 3011550
محتوای ارائه شده توسط Lukas Biewald. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Lukas Biewald یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

In this episode of Gradient Dissent, Lukas Biewald talks with the CEO & founder of Surge AI, the billion-dollar company quietly powering the next generation of frontier LLMs. They discuss Surge's origin story, why traditional data labeling is broken, and how their research-focused approach is reshaping how models are trained.

You’ll hear why inter-annotator agreement fails in high-complexity tasks like poetry and math, why synthetic data is often overrated, and how Surge builds rich RL environments to stress-test agentic reasoning. They also go deep on what kinds of data will be critical to future progress in AI—from scientific discovery to multimodal reasoning and personalized alignment.

It’s a rare, behind-the-scenes look into the world of high-quality data generation at scale—straight from the team most frontier labs trust to get it right.

Timestamps:

00:00 – Intro: Who is Edwin Chen?

03:40 – The problem with early data labeling systems

06:20 – Search ranking, clickbait, and product principles

10:05 – Why Surge focused on high-skill, high-quality labeling

13:50 – From Craigslist workers to a billion-dollar business

16:40 – Scaling without funding and avoiding Silicon Valley status games

21:15 – Why most human data platforms lack real tech

25:05 – Detecting cheaters, liars, and low-quality labelers

28:30 – Why inter-annotator agreement is a flawed metric

32:15 – What makes a great poem? Not checkboxes

36:40 – Measuring subjective quality rigorously

40:00 – What types of data are becoming more important

44:15 – Scientific collaboration and frontier research data

47:00 – Multimodal data, Argentinian coding, and hyper-specificity

50:10 – What's wrong with LMSYS and benchmark hacking

53:20 – Personalization and taste in model behavior

56:00 – Synthetic data vs. high-quality human data

Follow Weights & Biases:

https://twitter.com/weights_biases

https://www.linkedin.com/company/wandb

  continue reading

128 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش