Artwork

محتوای ارائه شده توسط Lukas Biewald. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Lukas Biewald یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

How DeepL Built a Translation Powerhouse with AI with CEO Jarek Kutylowski

42:42
 
اشتراک گذاری
 

Manage episode 493286582 series 3011550
محتوای ارائه شده توسط Lukas Biewald. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Lukas Biewald یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

In this episode of Gradient Dissent, Lukas Biewald talks with Jarek Kutylowski, CEO and founder of DeepL, an AI-powered translation company. Jarek shares DeepL’s journey from launching neural machine translation in 2017 to building custom data centers and how small teams can not only take on big players like Google Translate but win.

They dive into what makes translation so difficult for AI, why high-quality translations still require human context, and how DeepL tailors models for enterprise use cases. They also discuss the evolution of speech translation, compute infrastructure, training on curated multilingual datasets, hallucinations in models, and why DeepL avoids fine-tuning for each individual customer. It’s a fascinating behind-the-scenes look at one of the most advanced real-world applications of deep learning.

Timestamps:

[00:00:00] Introducing Jarek and DeepL’s mission

[00:01:46] Competing with Google Translate & LLMs

[00:04:14] Pretraining vs. proprietary model strategy

[00:06:47] Building GPU data centers in 2017

[00:08:09] The value of curated bilingual and monolingual data

[00:09:30] How DeepL measures translation quality

[00:12:27] Personalization and enterprise-specific tuning

[00:14:04] Why translation demand is growing

[00:16:16] ROI of incremental quality gains

[00:18:20] The role of human translators in the future

[00:22:48] Hallucinations in translation models

[00:24:05] DeepL’s work on speech translation

[00:28:22] The broader impact of global communication

[00:30:32] Handling smaller languages and language pairs

[00:32:25] Multi-language model consolidation

[00:35:28] Engineering infrastructure for large-scale inference

[00:39:23] Adapting to evolving LLM landscape & enterprise needs

  continue reading

128 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 493286582 series 3011550
محتوای ارائه شده توسط Lukas Biewald. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Lukas Biewald یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

In this episode of Gradient Dissent, Lukas Biewald talks with Jarek Kutylowski, CEO and founder of DeepL, an AI-powered translation company. Jarek shares DeepL’s journey from launching neural machine translation in 2017 to building custom data centers and how small teams can not only take on big players like Google Translate but win.

They dive into what makes translation so difficult for AI, why high-quality translations still require human context, and how DeepL tailors models for enterprise use cases. They also discuss the evolution of speech translation, compute infrastructure, training on curated multilingual datasets, hallucinations in models, and why DeepL avoids fine-tuning for each individual customer. It’s a fascinating behind-the-scenes look at one of the most advanced real-world applications of deep learning.

Timestamps:

[00:00:00] Introducing Jarek and DeepL’s mission

[00:01:46] Competing with Google Translate & LLMs

[00:04:14] Pretraining vs. proprietary model strategy

[00:06:47] Building GPU data centers in 2017

[00:08:09] The value of curated bilingual and monolingual data

[00:09:30] How DeepL measures translation quality

[00:12:27] Personalization and enterprise-specific tuning

[00:14:04] Why translation demand is growing

[00:16:16] ROI of incremental quality gains

[00:18:20] The role of human translators in the future

[00:22:48] Hallucinations in translation models

[00:24:05] DeepL’s work on speech translation

[00:28:22] The broader impact of global communication

[00:30:32] Handling smaller languages and language pairs

[00:32:25] Multi-language model consolidation

[00:35:28] Engineering infrastructure for large-scale inference

[00:39:23] Adapting to evolving LLM landscape & enterprise needs

  continue reading

128 قسمت

All episodes

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش