Artwork

محتوای ارائه شده توسط HackerNoon. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط HackerNoon یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

A Novel Framework for Analyzing Economic News Narratives Using GPT-3.5: Conclusions and References

9:38
 
اشتراک گذاری
 

Manage episode 423443687 series 3474376
محتوای ارائه شده توسط HackerNoon. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط HackerNoon یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

This story was originally published on HackerNoon at: https://hackernoon.com/a-novel-framework-for-analyzing-economic-news-narratives-using-gpt-35-conclusions-and-references.
Analyzing economic news with GPT-3.5 and network analysis to detect evolving topics and narratives, and linking news structures to financial market volatility.
Check more stories related to finance at: https://hackernoon.com/c/finance. You can also check exclusive content about #financial-markets, #ai-in-finance, #economic-news-analysis, #hedging-strategies, #gpt-3.5-applications, #sentiment-analysis, #network-analysis, #financial-market-volatility, and more.
This story was written by: @hedging. Learn more about this writer by checking @hedging's about page, and for more stories, please visit hackernoon.com.
Researchers analysed economic articles from The Wall Street Journal. They found that lower sentiment within news is more likely to be associated with weeks of market dislocation. This suggests that the interconnectedness of news’ topics and structure therein are meaningful aspect to further analyse within financial research, for which our study desires to serve as a first baseline.

  continue reading

143 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 423443687 series 3474376
محتوای ارائه شده توسط HackerNoon. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط HackerNoon یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

This story was originally published on HackerNoon at: https://hackernoon.com/a-novel-framework-for-analyzing-economic-news-narratives-using-gpt-35-conclusions-and-references.
Analyzing economic news with GPT-3.5 and network analysis to detect evolving topics and narratives, and linking news structures to financial market volatility.
Check more stories related to finance at: https://hackernoon.com/c/finance. You can also check exclusive content about #financial-markets, #ai-in-finance, #economic-news-analysis, #hedging-strategies, #gpt-3.5-applications, #sentiment-analysis, #network-analysis, #financial-market-volatility, and more.
This story was written by: @hedging. Learn more about this writer by checking @hedging's about page, and for more stories, please visit hackernoon.com.
Researchers analysed economic articles from The Wall Street Journal. They found that lower sentiment within news is more likely to be associated with weeks of market dislocation. This suggests that the interconnectedness of news’ topics and structure therein are meaningful aspect to further analyse within financial research, for which our study desires to serve as a first baseline.

  continue reading

143 قسمت

Alle afleveringen

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش