19 subscribers
با برنامه Player FM !
پادکست هایی که ارزش شنیدن دارند
حمایت شده
Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
«
»
096 - Why Chad Sanderson, Head of Product for Convoy’s Data Platform, is a Champion of Data UX
Manage episode 335468510 series 2938687
Today I chat with Chad Sanderson, Head of Product for Convoy’s data platform. I begin by having Chad explain why he calls himself a “data UX champion” and what inspired his interest in UX. Coming from a non-UX background, Chad explains how he came to develop a strategy for addressing the UX pain points at Convoy—a digital freight network. They “use technology to make freight more efficient, reducing costs for some of the nation’s largest brands, increasing earnings for carriers, and eliminating carbon emissions from our planet.” We also get into the metrics of success that Convoy uses to measure UX and why Chad is so heavily focused on user workflow when making the platform user-centered.
Later, Chad shares his definition of a data product, and how his experience with building software products has overlapped with data products. He also shares what he thinks is different about creating data products vs. traditional software products. Chad then explains Convoy’s approach to prototyping and the value of partnering with users in the design process. We wrap up by discussing how UX work gets accomplished on Chad’s team, given it doesn’t include any titled UX professionals.
Highlights:
- Chad explains how he became a data UX champion and what prompted him to care about UX (1:23)
- Chad talks about his strategy for beginning to address the UX issues at Convoy (4:42)
- How Convoy measures UX improvement (9:19)
- Chad talks about troubleshooting user workflows and it’s relevance to design (15:28)
- Chad explains what Convoy is and the makeup of his data platform team (21:00)
- What is a data product? Chad gives his definition and the similarities and differences between building software versus data products (23:21)
- Chad talks about using low fidelity work and prototypes to optimize solutions and resources in the long run (27:49)
- We talk about the value of partnering with users in the design process (30:37)
- Chad talks about the distribution of UX labor on his team (32:15)
Re: user research: "The best content that you get from people is when they are really thinking about what to say next; you sort of get into a free-flowing exchange of ideas. So it’s important to find the topic where someone can just talk at length without really filtering themselves. And I find a good place to start with that is to just talk about their problems. What are the painful things that you’ve experienced in data in the last month or in the last week?" - Chad
Re: UX research: "I often recommend asking users to show you something they were working on recently, particularly when they were having a problem accomplishing their goal. It’s a really good way to surface UX issues because the frustration is probably fresh." - Brian
Re: user feedback, “One of the really great pieces of advice that I got is, if you’re getting a lot of negative feedback, this is actually a sign that people care. And if people care about what you’ve built, then it’s better than overbuilding from the beginning.” - Chad
“What we found [in our research around workflow], though, sometimes counterintuitively, is that the steps that are the easiest and simplest for a customer to do that I think most people would look at and say, ‘Okay, it’s pretty low ROI to invest in some automated solution or a product in this space,’ are sometimes the most important things that you can [address in your data product] because of the impacts that it has downstream.” - Chad
Re: user feedback, “The amazing thing about building data products, and I guess any internal products is that 100% of your customers sit ten feet away from you. [...] When you can talk to 100% of [your users], you are truly going to understand [...] every single persona. And that is tremendously effective for creating compelling narratives about why we need to build a particular thing.” - Chad
“If we can get people to really believe that this data product is going to solve the problem, then usually, we like to turn those people into advocates and evangelists within the company, and part of their job is to go out and convince other people about why this thing can solve the problem.” - Chad
Links:
- Convoy: https://convoy.com/
- Chad on LinkedIn: https://www.linkedin.com/in/chad-sanderson/
- Chad’s Data Products newsletter: https://dataproducts.substack.com
105 قسمت
Manage episode 335468510 series 2938687
Today I chat with Chad Sanderson, Head of Product for Convoy’s data platform. I begin by having Chad explain why he calls himself a “data UX champion” and what inspired his interest in UX. Coming from a non-UX background, Chad explains how he came to develop a strategy for addressing the UX pain points at Convoy—a digital freight network. They “use technology to make freight more efficient, reducing costs for some of the nation’s largest brands, increasing earnings for carriers, and eliminating carbon emissions from our planet.” We also get into the metrics of success that Convoy uses to measure UX and why Chad is so heavily focused on user workflow when making the platform user-centered.
Later, Chad shares his definition of a data product, and how his experience with building software products has overlapped with data products. He also shares what he thinks is different about creating data products vs. traditional software products. Chad then explains Convoy’s approach to prototyping and the value of partnering with users in the design process. We wrap up by discussing how UX work gets accomplished on Chad’s team, given it doesn’t include any titled UX professionals.
Highlights:
- Chad explains how he became a data UX champion and what prompted him to care about UX (1:23)
- Chad talks about his strategy for beginning to address the UX issues at Convoy (4:42)
- How Convoy measures UX improvement (9:19)
- Chad talks about troubleshooting user workflows and it’s relevance to design (15:28)
- Chad explains what Convoy is and the makeup of his data platform team (21:00)
- What is a data product? Chad gives his definition and the similarities and differences between building software versus data products (23:21)
- Chad talks about using low fidelity work and prototypes to optimize solutions and resources in the long run (27:49)
- We talk about the value of partnering with users in the design process (30:37)
- Chad talks about the distribution of UX labor on his team (32:15)
Re: user research: "The best content that you get from people is when they are really thinking about what to say next; you sort of get into a free-flowing exchange of ideas. So it’s important to find the topic where someone can just talk at length without really filtering themselves. And I find a good place to start with that is to just talk about their problems. What are the painful things that you’ve experienced in data in the last month or in the last week?" - Chad
Re: UX research: "I often recommend asking users to show you something they were working on recently, particularly when they were having a problem accomplishing their goal. It’s a really good way to surface UX issues because the frustration is probably fresh." - Brian
Re: user feedback, “One of the really great pieces of advice that I got is, if you’re getting a lot of negative feedback, this is actually a sign that people care. And if people care about what you’ve built, then it’s better than overbuilding from the beginning.” - Chad
“What we found [in our research around workflow], though, sometimes counterintuitively, is that the steps that are the easiest and simplest for a customer to do that I think most people would look at and say, ‘Okay, it’s pretty low ROI to invest in some automated solution or a product in this space,’ are sometimes the most important things that you can [address in your data product] because of the impacts that it has downstream.” - Chad
Re: user feedback, “The amazing thing about building data products, and I guess any internal products is that 100% of your customers sit ten feet away from you. [...] When you can talk to 100% of [your users], you are truly going to understand [...] every single persona. And that is tremendously effective for creating compelling narratives about why we need to build a particular thing.” - Chad
“If we can get people to really believe that this data product is going to solve the problem, then usually, we like to turn those people into advocates and evangelists within the company, and part of their job is to go out and convince other people about why this thing can solve the problem.” - Chad
Links:
- Convoy: https://convoy.com/
- Chad on LinkedIn: https://www.linkedin.com/in/chad-sanderson/
- Chad’s Data Products newsletter: https://dataproducts.substack.com
105 قسمت
همه قسمت ها
×
1 170 - Turning Data into Impactful AI Products at Experian: Lessons from North American Chief AI Officer Shri Santhnam (Promoted Episode) 42:33

1 169 - AI Product Management and UX: What’s New (If Anything) About Making Valuable LLM-Powered Products with Stuart Winter-Tear 1:01:05

1 168 - 10 Challenges Internal Data Teams May Face Building Their First Revenue-Generating Data Product 38:24

1 167 - AI Product Management and Design: How Natalia Andreyeva and Team at Infor Nexus Create B2B Data Products that Customers Value 37:34

1 165 - How to Accommodate Multiple User Types and Needs in B2B Analytics and AI Products When You Lack UX Resources 49:04

1 164 - The Hidden UX Taxes that AI and LLM Features Impose on B2B Customers Without Your Knowledge 45:25

1 163 - It’s Not a Math Problem: How to Quantify the Value of Your Enterprise Data Products or Your Data Product Management Function 41:41

1 160 - Leading Product Through a Merger/Acquisition: Lessons from The Predictive Index’s CPO Adam Berke 42:10

1 159 - Uncorking Customer Insights: How Data Products Revealed Hidden Gems in Liquor & Hospitality Retail 40:47

1 158 - From Resistance to Reliance: Designing Data Products for Non-Believers with Anna Jacobson of Operator Collective 43:41

1 157 - How this materials science SAAS company brings PM+UX+data science together to help materials scientists accelerate R&D 34:58

1 156-The Challenges of Bringing UX Design and Data Science Together to Make Successful Pharma Data Products with Jeremy Forman 41:37


1 154 - 10 Things Founders of B2B SAAS Analytics and AI Startups Get Wrong About DIY Product and UI/UX Design 44:47

1 153 - What Impressed Me About How John Felushko Does Product and UX at the Analytics SAAS Company, LabStats 57:31

1 152 - 10 Reasons Not to Get Professional UX Design Help for Your Enterprise AI or SAAS Analytics Product 53:00

1 151 - Monetizing SAAS Analytics and The Challenges of Designing a Successful Embedded BI Product (Promoted Episode) 49:57

1 150 - How Specialized LLMs Can Help Enterprises Deliver Better GenAI User Experiences with Mark Ramsey 52:22

1 149 - What the Data Says About Why So Many Data Science and AI Initiatives Are Still Failing to Produce Value with Evan Shellshear 50:18



1 146 - (Rebroadcast) Beyond Data Science - Why Human-Centered AI Needs Design with Ben Shneiderman 42:07

1 145 - Data Product Success: Adopting a Customer-Centric Approach With Malcolm Hawker, Head of Data Management at Profisee 53:09

1 144 - The Data Product Debate: Essential Tech or Excessive Effort? with Shashank Garg, CEO of Infocepts (Promoted Episode) 52:38

1 143 - The (5) Top Reasons AI/ML and Analytics SAAS Product Leaders Come to Me For UI/UX Design Help 50:01

1 142 - Live Webinar Recording: My UI/UX Design Audit of a New Podcast Analytics Service w/ Chris Hill (CEO, Humblepod) 50:56


1 140 - Why Data Visualization Alone Doesn’t Fix UI/UX Design Problems in Analytical Data Products with T from Data Rocks NZ 42:44

1 139 - Monetizing SAAS Analytics and The Challenges of Designing a Successful Embedded BI Product (Promoted Episode) 51:02

1 138 - VC Spotlight: The Impact of AI on SAAS and Data/Developer Products in 2024 w/ Ellen Chisa of BoldStart Ventures 33:05

1 137 - Immature Data, Immature Clients: When Are Data Products the Right Approach? feat. Data Product Architect, Karen Meppen 44:50

1 136 - Navigating the Politics of UX Research and Data Product Design with Caroline Zimmerman 44:16

1 135 - “No Time for That:” Enabling Effective Data Product UX Research in Product-Immature Organizations 52:47




1 131 - 15 Ways to Increase User Adoption of Data Products (Without Handcuffs, Threats and Mandates) with Brian T. O’Neill 36:57

1 130 - Nick Zervoudis on Data Product Management, UX Design Training and Overcoming Imposter Syndrome 48:56

1 129 - Why We Stopped, Deleted 18 Months of ML Work, and Shifted to a Data Product Mindset at Coolblue 35:21

1 128 - Data Products for Dummies and The Importance of Data Product Management with Vishal Singh of Starburst 53:01

1 127 - On the Road to Adopting a “Producty” Approach to Data Products at the UK’s Care Quality Commission with Jonathan Cairns-Terry 36:55

به Player FM خوش آمدید!
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.