19 subscribers
با برنامه Player FM !
پادکست هایی که ارزش شنیدن دارند
حمایت شده


Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
«
»
112 - Solving for Common Pitfalls When Developing a Data Strategy featuring Samir Sharma, CEO of datazuum
Manage episode 357208402 series 2938687
Today I’m chatting with Samir Sharma, CEO of datazuum. Samir is passionate about developing data strategies that drive business outcomes, and shares valuable insights into how problem framing and research can be done effectively from both the data and business side. Samir also provides his definition of a data strategy, and why it can be complicated to uncover whose job it is to create one. Throughout the conversation, Samir and I uncover the value of including different perspectives when implementing a data strategy and discuss solutions to various communication barriers. Of course, dashboards and data products also popped up in this episode as well!
Highlights/ Skip to:
- How Samir defines a data strategy and whose job it is to create one (01:39)
- The challenges Samir sees when trying to uncover and understand a company’s existing data strategy (03:39)
- The problem with the problem statements that Samir commonly encounters (08:37)
- Samir unpacks the communication challenges that lead to negative business outcomes when developing data products (14:05)
- An example of how improving research and problem framing solved a problem for Samir’s first big client (24:33)
- How speaking in a language your users understand can open the door to more exciting and valuable projects (31:08)
- “I don’t think business teams really care how you do it. If you can get an outcome—even if it’s quick and dirty. We’re not supposed to be doing these things for months on end. We’re supposed to be iterating quickly to start to show that result and add value and then building on top of that to show more value, more results.” — Samir Sharma (07:29)
- “Language is so important for business teams and technical teams and data teams to actually be able to speak a common language which has common business constructs. Why are organizations trying to train 20,000 people on data literacy, when they’ve got a ten-person data team? Why not just teach the ten people in the data team business language?” — Samir Sharma (10:52)
- “I will continuously talk about processes because there’s not enough done actually understanding processes and how data is an event that occurs when a process is kicked off. … If you don’t understand the process and how data is enabling that process, or how data is being generated and the trigger points, then you’re just building something without really understanding where I need to fit that product in or where I need to fit that workflow in.” – Samir Sharma (11:46)
- “But I start with asking clear questions about if I built you this dashboard, what is the decision you’re going to make off the back of it? Nine times out of ten, that question isn’t asked, if I build you this widget on this dashboard, what decision or action are you going to make or take? And how is that going to be linked back to the map that strategic objective? And if you can ask that question, you can build with purpose.” – Samir Sharma (19:27)
- “You show [users] a bit of value, you show them what they’ve been dying to have, you give them a little bit extra in that so they can really optimize their decisions, and suddenly, you’ve got both sides now speaking a language that is really based on business outcomes and results.” – Samir Sharma (32:38)
- “If the people in that conversation are the developers on one side, the business team, and they’re starting to see a new narrative, even the developers will start to say, “Oh! Now, I know exactly why I’m doing this. Now, I know why I’m building it.” So, they’re also starting to learn about the business, about what impacts sales, and maybe how marketing then intertwines into that. It’s important that that is done, but not enough time has been taken on that approach.” – Samir Sharma (24:05)
- The thing for me is, business teams don’t know what they don’t know, right? Most of the time, they’re asking a question. If I was on the data team and I’d already built a dashboard that would [answer that question], then I haven’t built it properly in the first instance. What I’ve done is I’ve built it for the beauty and the visualization instead of the what I would class is the ugliness and impact that I need.” – Samir Sharma (17:05)
- datazuum: https://datazuum.com/
- LinkedIn: https://www.linkedin.com/in/samirsharma1/
105 قسمت
Manage episode 357208402 series 2938687
Today I’m chatting with Samir Sharma, CEO of datazuum. Samir is passionate about developing data strategies that drive business outcomes, and shares valuable insights into how problem framing and research can be done effectively from both the data and business side. Samir also provides his definition of a data strategy, and why it can be complicated to uncover whose job it is to create one. Throughout the conversation, Samir and I uncover the value of including different perspectives when implementing a data strategy and discuss solutions to various communication barriers. Of course, dashboards and data products also popped up in this episode as well!
Highlights/ Skip to:
- How Samir defines a data strategy and whose job it is to create one (01:39)
- The challenges Samir sees when trying to uncover and understand a company’s existing data strategy (03:39)
- The problem with the problem statements that Samir commonly encounters (08:37)
- Samir unpacks the communication challenges that lead to negative business outcomes when developing data products (14:05)
- An example of how improving research and problem framing solved a problem for Samir’s first big client (24:33)
- How speaking in a language your users understand can open the door to more exciting and valuable projects (31:08)
- “I don’t think business teams really care how you do it. If you can get an outcome—even if it’s quick and dirty. We’re not supposed to be doing these things for months on end. We’re supposed to be iterating quickly to start to show that result and add value and then building on top of that to show more value, more results.” — Samir Sharma (07:29)
- “Language is so important for business teams and technical teams and data teams to actually be able to speak a common language which has common business constructs. Why are organizations trying to train 20,000 people on data literacy, when they’ve got a ten-person data team? Why not just teach the ten people in the data team business language?” — Samir Sharma (10:52)
- “I will continuously talk about processes because there’s not enough done actually understanding processes and how data is an event that occurs when a process is kicked off. … If you don’t understand the process and how data is enabling that process, or how data is being generated and the trigger points, then you’re just building something without really understanding where I need to fit that product in or where I need to fit that workflow in.” – Samir Sharma (11:46)
- “But I start with asking clear questions about if I built you this dashboard, what is the decision you’re going to make off the back of it? Nine times out of ten, that question isn’t asked, if I build you this widget on this dashboard, what decision or action are you going to make or take? And how is that going to be linked back to the map that strategic objective? And if you can ask that question, you can build with purpose.” – Samir Sharma (19:27)
- “You show [users] a bit of value, you show them what they’ve been dying to have, you give them a little bit extra in that so they can really optimize their decisions, and suddenly, you’ve got both sides now speaking a language that is really based on business outcomes and results.” – Samir Sharma (32:38)
- “If the people in that conversation are the developers on one side, the business team, and they’re starting to see a new narrative, even the developers will start to say, “Oh! Now, I know exactly why I’m doing this. Now, I know why I’m building it.” So, they’re also starting to learn about the business, about what impacts sales, and maybe how marketing then intertwines into that. It’s important that that is done, but not enough time has been taken on that approach.” – Samir Sharma (24:05)
- The thing for me is, business teams don’t know what they don’t know, right? Most of the time, they’re asking a question. If I was on the data team and I’d already built a dashboard that would [answer that question], then I haven’t built it properly in the first instance. What I’ve done is I’ve built it for the beauty and the visualization instead of the what I would class is the ugliness and impact that I need.” – Samir Sharma (17:05)
- datazuum: https://datazuum.com/
- LinkedIn: https://www.linkedin.com/in/samirsharma1/
105 قسمت
همه قسمت ها
×
1 170 - Turning Data into Impactful AI Products at Experian: Lessons from North American Chief AI Officer Shri Santhnam (Promoted Episode) 42:33

1 169 - AI Product Management and UX: What’s New (If Anything) About Making Valuable LLM-Powered Products with Stuart Winter-Tear 1:01:05

1 168 - 10 Challenges Internal Data Teams May Face Building Their First Revenue-Generating Data Product 38:24

1 167 - AI Product Management and Design: How Natalia Andreyeva and Team at Infor Nexus Create B2B Data Products that Customers Value 37:34

1 165 - How to Accommodate Multiple User Types and Needs in B2B Analytics and AI Products When You Lack UX Resources 49:04

1 164 - The Hidden UX Taxes that AI and LLM Features Impose on B2B Customers Without Your Knowledge 45:25

1 163 - It’s Not a Math Problem: How to Quantify the Value of Your Enterprise Data Products or Your Data Product Management Function 41:41

1 160 - Leading Product Through a Merger/Acquisition: Lessons from The Predictive Index’s CPO Adam Berke 42:10

1 159 - Uncorking Customer Insights: How Data Products Revealed Hidden Gems in Liquor & Hospitality Retail 40:47

1 158 - From Resistance to Reliance: Designing Data Products for Non-Believers with Anna Jacobson of Operator Collective 43:41

1 157 - How this materials science SAAS company brings PM+UX+data science together to help materials scientists accelerate R&D 34:58

1 156-The Challenges of Bringing UX Design and Data Science Together to Make Successful Pharma Data Products with Jeremy Forman 41:37


1 154 - 10 Things Founders of B2B SAAS Analytics and AI Startups Get Wrong About DIY Product and UI/UX Design 44:47

1 153 - What Impressed Me About How John Felushko Does Product and UX at the Analytics SAAS Company, LabStats 57:31

1 152 - 10 Reasons Not to Get Professional UX Design Help for Your Enterprise AI or SAAS Analytics Product 53:00

1 151 - Monetizing SAAS Analytics and The Challenges of Designing a Successful Embedded BI Product (Promoted Episode) 49:57

1 150 - How Specialized LLMs Can Help Enterprises Deliver Better GenAI User Experiences with Mark Ramsey 52:22

1 149 - What the Data Says About Why So Many Data Science and AI Initiatives Are Still Failing to Produce Value with Evan Shellshear 50:18



1 146 - (Rebroadcast) Beyond Data Science - Why Human-Centered AI Needs Design with Ben Shneiderman 42:07

1 145 - Data Product Success: Adopting a Customer-Centric Approach With Malcolm Hawker, Head of Data Management at Profisee 53:09

1 144 - The Data Product Debate: Essential Tech or Excessive Effort? with Shashank Garg, CEO of Infocepts (Promoted Episode) 52:38

1 143 - The (5) Top Reasons AI/ML and Analytics SAAS Product Leaders Come to Me For UI/UX Design Help 50:01

1 142 - Live Webinar Recording: My UI/UX Design Audit of a New Podcast Analytics Service w/ Chris Hill (CEO, Humblepod) 50:56


1 140 - Why Data Visualization Alone Doesn’t Fix UI/UX Design Problems in Analytical Data Products with T from Data Rocks NZ 42:44

1 139 - Monetizing SAAS Analytics and The Challenges of Designing a Successful Embedded BI Product (Promoted Episode) 51:02

1 138 - VC Spotlight: The Impact of AI on SAAS and Data/Developer Products in 2024 w/ Ellen Chisa of BoldStart Ventures 33:05

1 137 - Immature Data, Immature Clients: When Are Data Products the Right Approach? feat. Data Product Architect, Karen Meppen 44:50

1 136 - Navigating the Politics of UX Research and Data Product Design with Caroline Zimmerman 44:16

1 135 - “No Time for That:” Enabling Effective Data Product UX Research in Product-Immature Organizations 52:47




1 131 - 15 Ways to Increase User Adoption of Data Products (Without Handcuffs, Threats and Mandates) with Brian T. O’Neill 36:57

1 130 - Nick Zervoudis on Data Product Management, UX Design Training and Overcoming Imposter Syndrome 48:56

1 129 - Why We Stopped, Deleted 18 Months of ML Work, and Shifted to a Data Product Mindset at Coolblue 35:21

1 128 - Data Products for Dummies and The Importance of Data Product Management with Vishal Singh of Starburst 53:01

1 127 - On the Road to Adopting a “Producty” Approach to Data Products at the UK’s Care Quality Commission with Jonathan Cairns-Terry 36:55

به Player FM خوش آمدید!
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.