با برنامه Player FM !
Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
«
»
125 - Human-Centered XAI: Moving from Algorithms to Explainable ML UX with Microsoft Researcher Vera Liao
Manage episode 376109532 series 2527129
Today I’m joined by Vera Liao, Principal Researcher at Microsoft. Vera is a part of the FATE (Fairness, Accountability, Transparency, and Ethics of AI) group, and her research centers around the ethics, explainability, and interpretability of AI products. She is particularly focused on how designers design for explainability. Throughout our conversation, we focus on the importance of taking a human-centered approach to rendering model explainability within a UI, and why incorporating users during the design process informs the data science work and leads to better outcomes. Vera also shares some research on why example-based explanations tend to out-perform [model] feature-based explanations, and why traditional XAI methods LIME and SHAP aren’t the solution to every explainability problem a user may have.
Highlights/ Skip to:
- I introduce Vera, who is Principal Researcher at Microsoft and whose research mainly focuses on the ethics, explainability, and interpretability of AI (00:35)
- Vera expands on her view that explainability should be at the core of ML applications (02:36)
- An example of the non-human approach to explainability that Vera is advocating against (05:35)
- Vera shares where practitioners can start the process of responsible AI (09:32)
- Why Vera advocates for doing qualitative research in tandem with model work in order to improve outcomes (13:51)
- I summarize the slides I saw in Vera’s deck on Human-Centered XAI and Vera expands on my understanding (16:06)
- Vera’s success criteria for explainability (19:45)
- The various applications of AI explainability that Vera has seen evolve over the years (21:52)
- Why Vera is a proponent of example-based explanations over model feature ones (26:15)
- Strategies Vera recommends for getting feedback from users to determine what the right explainability experience might be (32:07)
- The research trends Vera would most like to see technical practitioners apply to their work (36:47)
- Summary of the four-step process Vera outlines for Question-Driven XAI design (39:14)
Links
113 قسمت
Manage episode 376109532 series 2527129
Today I’m joined by Vera Liao, Principal Researcher at Microsoft. Vera is a part of the FATE (Fairness, Accountability, Transparency, and Ethics of AI) group, and her research centers around the ethics, explainability, and interpretability of AI products. She is particularly focused on how designers design for explainability. Throughout our conversation, we focus on the importance of taking a human-centered approach to rendering model explainability within a UI, and why incorporating users during the design process informs the data science work and leads to better outcomes. Vera also shares some research on why example-based explanations tend to out-perform [model] feature-based explanations, and why traditional XAI methods LIME and SHAP aren’t the solution to every explainability problem a user may have.
Highlights/ Skip to:
- I introduce Vera, who is Principal Researcher at Microsoft and whose research mainly focuses on the ethics, explainability, and interpretability of AI (00:35)
- Vera expands on her view that explainability should be at the core of ML applications (02:36)
- An example of the non-human approach to explainability that Vera is advocating against (05:35)
- Vera shares where practitioners can start the process of responsible AI (09:32)
- Why Vera advocates for doing qualitative research in tandem with model work in order to improve outcomes (13:51)
- I summarize the slides I saw in Vera’s deck on Human-Centered XAI and Vera expands on my understanding (16:06)
- Vera’s success criteria for explainability (19:45)
- The various applications of AI explainability that Vera has seen evolve over the years (21:52)
- Why Vera is a proponent of example-based explanations over model feature ones (26:15)
- Strategies Vera recommends for getting feedback from users to determine what the right explainability experience might be (32:07)
- The research trends Vera would most like to see technical practitioners apply to their work (36:47)
- Summary of the four-step process Vera outlines for Question-Driven XAI design (39:14)
Links
113 قسمت
همه قسمت ها
×به Player FM خوش آمدید!
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.