16 subscribers
با برنامه Player FM !
پادکست هایی که ارزش شنیدن دارند
حمایت شده


Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)
«
»
119 - Skills vs. Roles: Data Product Management and Design with Nadiem von Heydebrand (Part 1)
Manage episode 365895548 series 2527129
The conversation with my next guest was going so deep and so well…it became a two part episode! Today I’m chatting with Nadiem von Heydebrand, CEO of Mindfuel. Nadiem’s career journey led him from data science to data product management, and in this first, we will focus on the skills of data product management (DPM), including design. In part 2, we jump more into Nadiem’s take on the role of the DPM. Nadiem gives actionable insights into the realities of data product management, from the challenges of actually being able to talk to your end users, to focusing on the problems and unarticulated needs of your users rather than solutions. Nadiem and I also discuss how data product managers oversee a portfolio of initiatives, and why it’s important to view that portfolio as a series of investments. Nadiem also emphasizes the value of having designers on a data team, and why he hopes we see more designers in the industry.
Highlights/ Skip to:
- Brian introduces Nadiem and his background going from data science to data product management (00:36)
- Nadiem gives not only his definition of a data product, but also his related definitions of ‘data as product,’ ‘data as information,’ and ‘data as a model’ products (02:19)
- Nadiem outlines the skill set and activities he finds most valuable in a data product manager (05:15)
- How a data organization typically functions and the challenges a data team faces to prove their value (11:20)
- Brian and Nadiem discuss the challenges and realities of being able to do discovery with the end users of data products (17:42)
- Nadiem outlines how a portfolio of data initiatives has a certain investment attached to it and why it’s important to generate a good result from those investments (21:30)
- Why Nadiem wants to see more designers in the data product space and the problems designers solve for data teams (25:37)
- Nadiem shares a story about a time when he wished he had a designer to convert the expressed needs of the business into the true need of the customer (30:10)
- The value of solving for the unarticulated needs of your product users, and Nadiem shares how focusing on problems rather than solutions helped him (32:32)
- Nadiem shares how you can connect with him and find out more about his company, Mindfuel (36:07)
- “The product mindset already says it quite well. When you look into classical product management, you have something called the viability, the desirability, the feasibility—so these are three very classic dimensions of product management—and the fourth dimension, we at Mindfuel define for ourselves and for applications are, is the datability.” — Nadiem von Heydebrand (06:51)
- “We can only prove our [data team’s] value if we unlock business opportunities in their [clients’] lines of businesses. So, our value contribution is indirect. And measuring indirect value contribution is very difficult in organizations.” — Nadiem von Heydebrand (11:57)
- “Whenever we think about data and analytics, we put a lot of investment and efforts in the delivery piece. I saw a study once where it said 3% of investments go into discovery and 90% of investments go into delivery and the rest is operations and a little bit overhead and all around. So, we have to balance and we have to do proper discovery to understand what problem do we want to solve.” — Nadiem von Heydebrand (13:59)
- “The best initiatives I delivered in my career, and also now within Mindfuel, are the ones where we try to build an end responsibility from the lines of businesses, among the product managers, to PO, the product owner, and then the delivery team.” – Nadiem von Heydebrand (17:00)
- “As a consultant, I typically think in solutions. And when we founded Mindfuel, my co-founder forced me to avoid talking about the solution for an entire ten months. So, in whatever meeting we were sitting, I was not allowed to talk about the solution, but only about the problem space.” – Nadiem von Heydebrand (34:12)
- “In scaled organizations, data product managers, they typically run a portfolio of data products, and each single product can be seen a little bit like from an investment point of view, this is where we putting our money in, so that’s the reason why we also have to prioritize the right use cases or product initiatives because typically we have limited resources, either it is investment money, people, resources or our time.” – Nadiem von Heydebrand (24:02)
- “Unfortunately, we don’t see enough designers in data organizations yet. So, I would love to have more design people around me in the data organizations, not only from a delivery perspective, having people building amazing dashboards, but also, like, truly helping me in this kind of discovery space.” – Nadiem von Heydebrand (26:28)
- Mindfuel: https://mindfuel.ai/
- Personal LinkedIn: https://www.linkedin.com/in/nadiemvh/
- Mindfuel LinkedIn: https://www.linkedin.com/company/mindfuelai/
113 قسمت
Manage episode 365895548 series 2527129
The conversation with my next guest was going so deep and so well…it became a two part episode! Today I’m chatting with Nadiem von Heydebrand, CEO of Mindfuel. Nadiem’s career journey led him from data science to data product management, and in this first, we will focus on the skills of data product management (DPM), including design. In part 2, we jump more into Nadiem’s take on the role of the DPM. Nadiem gives actionable insights into the realities of data product management, from the challenges of actually being able to talk to your end users, to focusing on the problems and unarticulated needs of your users rather than solutions. Nadiem and I also discuss how data product managers oversee a portfolio of initiatives, and why it’s important to view that portfolio as a series of investments. Nadiem also emphasizes the value of having designers on a data team, and why he hopes we see more designers in the industry.
Highlights/ Skip to:
- Brian introduces Nadiem and his background going from data science to data product management (00:36)
- Nadiem gives not only his definition of a data product, but also his related definitions of ‘data as product,’ ‘data as information,’ and ‘data as a model’ products (02:19)
- Nadiem outlines the skill set and activities he finds most valuable in a data product manager (05:15)
- How a data organization typically functions and the challenges a data team faces to prove their value (11:20)
- Brian and Nadiem discuss the challenges and realities of being able to do discovery with the end users of data products (17:42)
- Nadiem outlines how a portfolio of data initiatives has a certain investment attached to it and why it’s important to generate a good result from those investments (21:30)
- Why Nadiem wants to see more designers in the data product space and the problems designers solve for data teams (25:37)
- Nadiem shares a story about a time when he wished he had a designer to convert the expressed needs of the business into the true need of the customer (30:10)
- The value of solving for the unarticulated needs of your product users, and Nadiem shares how focusing on problems rather than solutions helped him (32:32)
- Nadiem shares how you can connect with him and find out more about his company, Mindfuel (36:07)
- “The product mindset already says it quite well. When you look into classical product management, you have something called the viability, the desirability, the feasibility—so these are three very classic dimensions of product management—and the fourth dimension, we at Mindfuel define for ourselves and for applications are, is the datability.” — Nadiem von Heydebrand (06:51)
- “We can only prove our [data team’s] value if we unlock business opportunities in their [clients’] lines of businesses. So, our value contribution is indirect. And measuring indirect value contribution is very difficult in organizations.” — Nadiem von Heydebrand (11:57)
- “Whenever we think about data and analytics, we put a lot of investment and efforts in the delivery piece. I saw a study once where it said 3% of investments go into discovery and 90% of investments go into delivery and the rest is operations and a little bit overhead and all around. So, we have to balance and we have to do proper discovery to understand what problem do we want to solve.” — Nadiem von Heydebrand (13:59)
- “The best initiatives I delivered in my career, and also now within Mindfuel, are the ones where we try to build an end responsibility from the lines of businesses, among the product managers, to PO, the product owner, and then the delivery team.” – Nadiem von Heydebrand (17:00)
- “As a consultant, I typically think in solutions. And when we founded Mindfuel, my co-founder forced me to avoid talking about the solution for an entire ten months. So, in whatever meeting we were sitting, I was not allowed to talk about the solution, but only about the problem space.” – Nadiem von Heydebrand (34:12)
- “In scaled organizations, data product managers, they typically run a portfolio of data products, and each single product can be seen a little bit like from an investment point of view, this is where we putting our money in, so that’s the reason why we also have to prioritize the right use cases or product initiatives because typically we have limited resources, either it is investment money, people, resources or our time.” – Nadiem von Heydebrand (24:02)
- “Unfortunately, we don’t see enough designers in data organizations yet. So, I would love to have more design people around me in the data organizations, not only from a delivery perspective, having people building amazing dashboards, but also, like, truly helping me in this kind of discovery space.” – Nadiem von Heydebrand (26:28)
- Mindfuel: https://mindfuel.ai/
- Personal LinkedIn: https://www.linkedin.com/in/nadiemvh/
- Mindfuel LinkedIn: https://www.linkedin.com/company/mindfuelai/
113 قسمت
همه قسمت ها
×
1 172 - Building AI Assistants, Not Autopilots: What Tony Zhang’s Research Shows About Automation Blindness 44:24

1 170 - Turning Data into Impactful AI Products at Experian: Lessons from North American Chief AI Officer Shri Santhnam (Promoted Episode) 42:33

1 169 - AI Product Management and UX: What’s New (If Anything) About Making Valuable LLM-Powered Products with Stuart Winter-Tear 1:01:05

1 168 - 10 Challenges Internal Data Teams May Face Building Their First Revenue-Generating Data Product 38:24

1 167 - AI Product Management and Design: How Natalia Andreyeva and Team at Infor Nexus Create B2B Data Products that Customers Value 37:34

1 165 - How to Accommodate Multiple User Types and Needs in B2B Analytics and AI Products When You Lack UX Resources 49:04

1 164 - The Hidden UX Taxes that AI and LLM Features Impose on B2B Customers Without Your Knowledge 45:25

1 163 - It’s Not a Math Problem: How to Quantify the Value of Your Enterprise Data Products or Your Data Product Management Function 41:41

1 160 - Leading Product Through a Merger/Acquisition: Lessons from The Predictive Index’s CPO Adam Berke 42:10

1 159 - Uncorking Customer Insights: How Data Products Revealed Hidden Gems in Liquor & Hospitality Retail 40:47

1 158 - From Resistance to Reliance: Designing Data Products for Non-Believers with Anna Jacobson of Operator Collective 43:41

1 157 - How this materials science SAAS company brings PM+UX+data science together to help materials scientists accelerate R&D 34:58

1 156-The Challenges of Bringing UX Design and Data Science Together to Make Successful Pharma Data Products with Jeremy Forman 41:37


1 154 - 10 Things Founders of B2B SAAS Analytics and AI Startups Get Wrong About DIY Product and UI/UX Design 44:47

1 153 - What Impressed Me About How John Felushko Does Product and UX at the Analytics SAAS Company, LabStats 57:31

1 152 - 10 Reasons Not to Get Professional UX Design Help for Your Enterprise AI or SAAS Analytics Product 53:00

1 151 - Monetizing SAAS Analytics and The Challenges of Designing a Successful Embedded BI Product (Promoted Episode) 49:57

1 150 - How Specialized LLMs Can Help Enterprises Deliver Better GenAI User Experiences with Mark Ramsey 52:22

1 149 - What the Data Says About Why So Many Data Science and AI Initiatives Are Still Failing to Produce Value with Evan Shellshear 50:18



1 146 - (Rebroadcast) Beyond Data Science - Why Human-Centered AI Needs Design with Ben Shneiderman 42:07

1 145 - Data Product Success: Adopting a Customer-Centric Approach With Malcolm Hawker, Head of Data Management at Profisee 53:09

1 144 - The Data Product Debate: Essential Tech or Excessive Effort? with Shashank Garg, CEO of Infocepts (Promoted Episode) 52:38

1 143 - The (5) Top Reasons AI/ML and Analytics SAAS Product Leaders Come to Me For UI/UX Design Help 50:01

1 142 - Live Webinar Recording: My UI/UX Design Audit of a New Podcast Analytics Service w/ Chris Hill (CEO, Humblepod) 50:56


1 140 - Why Data Visualization Alone Doesn’t Fix UI/UX Design Problems in Analytical Data Products with T from Data Rocks NZ 42:44

1 139 - Monetizing SAAS Analytics and The Challenges of Designing a Successful Embedded BI Product (Promoted Episode) 51:02

1 138 - VC Spotlight: The Impact of AI on SAAS and Data/Developer Products in 2024 w/ Ellen Chisa of BoldStart Ventures 33:05

1 137 - Immature Data, Immature Clients: When Are Data Products the Right Approach? feat. Data Product Architect, Karen Meppen 44:50

1 136 - Navigating the Politics of UX Research and Data Product Design with Caroline Zimmerman 44:16

1 135 - “No Time for That:” Enabling Effective Data Product UX Research in Product-Immature Organizations 52:47




1 131 - 15 Ways to Increase User Adoption of Data Products (Without Handcuffs, Threats and Mandates) with Brian T. O’Neill 36:57

1 130 - Nick Zervoudis on Data Product Management, UX Design Training and Overcoming Imposter Syndrome 48:56

1 129 - Why We Stopped, Deleted 18 Months of ML Work, and Shifted to a Data Product Mindset at Coolblue 35:21

1 128 - Data Products for Dummies and The Importance of Data Product Management with Vishal Singh of Starburst 53:01

1 127 - On the Road to Adopting a “Producty” Approach to Data Products at the UK’s Care Quality Commission with Jonathan Cairns-Terry 36:55


1 125 - Human-Centered XAI: Moving from Algorithms to Explainable ML UX with Microsoft Researcher Vera Liao 44:42


1 123 - Learnings From the CDOIQ Symposium and How Data Product Definitions are Evolving with Brian T. O’Neill 27:17

1 122 - Listener Questions Answered: Conducting Effective Discovery for Data Products with Brian T. O’Neill 33:46

1 121 - How Sainsbury’s Head of Data Products for Analytics and ML Designs for User Adoption with Peter Everill 39:40

1 120 - The Portfolio Mindset: Data Product Management and Design with Nadiem von Heydebrand (Part 2) 41:35

1 119 - Skills vs. Roles: Data Product Management and Design with Nadiem von Heydebrand (Part 1) 37:12

1 118 - Attracting Talent and Landing a Role in Data Product Management with Kyle Winterbottom 49:23

1 117 - Phil Harvey, Co-Author of “Data: A Guide to Humans,” on the Non-Technical Skills Needed to Produce Valuable AI Solutions 39:39

1 116 - 10 Reasons Your Customers Don’t Make Time for Your Data Product Initiatives + A Big Update on the Data Product Leadership Community (DPLC) 45:56

1 115 - Applying a Product and UX-Driven Approach to Building Stuart’s Data Platform with Osian Jones 45:19

1 114 - Designing Anti-Biasing and Explainability Tools for Data Scientists Creating ML Models with Josh Noble 42:05

1 113 - Turning the Weather into an Indispensable Data Product for Businesses with Cole Swain, VP Product at tomorrow.io 38:53
به Player FM خوش آمدید!
Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.