Artwork

محتوای ارائه شده توسط Arize AI. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Arize AI یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

RAFT: Adapting Language Model to Domain Specific RAG

44:01
 
اشتراک گذاری
 

Manage episode 426158561 series 3448051
محتوای ارائه شده توسط Arize AI. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Arize AI یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Where adapting LLMs to specialized domains is essential (e.g., recent news, enterprise private documents), we discuss a paper that asks how we adapt pre-trained LLMs for RAG in specialized domains. SallyAnn DeLucia is joined by Sai Kolasani, researcher at UC Berkeley’s RISE Lab (and Arize AI Intern), to talk about his work on RAFT: Adapting Language Model to Domain Specific RAG.

RAFT (Retrieval-Augmented FineTuning) is a training recipe that improves an LLM’s ability to answer questions in a “open-book” in-domain settings. Given a question, and a set of retrieved documents, the model is trained to ignore documents that don’t help in answering the question (aka distractor documents). This coupled with RAFT’s chain-of-thought-style response, helps improve the model’s ability to reason. In domain-specific RAG, RAFT consistently improves the model’s performance across PubMed, HotpotQA, and Gorilla datasets, presenting a post-training recipe to improve pre-trained LLMs to in-domain RAG.

Read it on the blog: https://arize.com/blog/raft-adapting-language-model-to-domain-specific-rag/

Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.

  continue reading

51 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 426158561 series 3448051
محتوای ارائه شده توسط Arize AI. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Arize AI یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

Where adapting LLMs to specialized domains is essential (e.g., recent news, enterprise private documents), we discuss a paper that asks how we adapt pre-trained LLMs for RAG in specialized domains. SallyAnn DeLucia is joined by Sai Kolasani, researcher at UC Berkeley’s RISE Lab (and Arize AI Intern), to talk about his work on RAFT: Adapting Language Model to Domain Specific RAG.

RAFT (Retrieval-Augmented FineTuning) is a training recipe that improves an LLM’s ability to answer questions in a “open-book” in-domain settings. Given a question, and a set of retrieved documents, the model is trained to ignore documents that don’t help in answering the question (aka distractor documents). This coupled with RAFT’s chain-of-thought-style response, helps improve the model’s ability to reason. In domain-specific RAG, RAFT consistently improves the model’s performance across PubMed, HotpotQA, and Gorilla datasets, presenting a post-training recipe to improve pre-trained LLMs to in-domain RAG.

Read it on the blog: https://arize.com/blog/raft-adapting-language-model-to-domain-specific-rag/

Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.

  continue reading

51 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش