Artwork

محتوای ارائه شده توسط Kyle Polich. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Kyle Polich یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Fraud Detection with Graphs

37:23
 
اشتراک گذاری
 

Manage episode 462377466 series 1361404
محتوای ارائه شده توسط Kyle Polich. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Kyle Polich یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

In this episode, Šimon Mandlík, a PhD candidate at the Czech Technical University will talk with us about leveraging machine learning and graph-based techniques for cybersecurity applications.

We'll learn how graphs are used to detect malicious activity in networks, such as identifying harmful domains and executable files by analyzing their relationships within vast datasets.

This will include the use of hierarchical multi-instance learning (HML) to represent JSON-based network activity as graphs and the advantages of analyzing connections between entities (like clients, domains etc.).

Our guest shows that while other graph methods (such as GNN or Label Propagation) lack in scalability or having trouble with heterogeneous graphs, his method can tackle them because of the "locality assumption" – fraud will be a local phenomenon in the graph – and by relying on this assumption, we can get faster and more accurate results.

-------------------------------

Want to listen ad-free? Try our Graphs Course? Join Data Skeptic+ for $5 / month of $50 / year

https://plus.dataskeptic.com

  continue reading

570 قسمت

Artwork

Fraud Detection with Graphs

Data Skeptic

281 subscribers

published

iconاشتراک گذاری
 
Manage episode 462377466 series 1361404
محتوای ارائه شده توسط Kyle Polich. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Kyle Polich یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

In this episode, Šimon Mandlík, a PhD candidate at the Czech Technical University will talk with us about leveraging machine learning and graph-based techniques for cybersecurity applications.

We'll learn how graphs are used to detect malicious activity in networks, such as identifying harmful domains and executable files by analyzing their relationships within vast datasets.

This will include the use of hierarchical multi-instance learning (HML) to represent JSON-based network activity as graphs and the advantages of analyzing connections between entities (like clients, domains etc.).

Our guest shows that while other graph methods (such as GNN or Label Propagation) lack in scalability or having trouble with heterogeneous graphs, his method can tackle them because of the "locality assumption" – fraud will be a local phenomenon in the graph – and by relying on this assumption, we can get faster and more accurate results.

-------------------------------

Want to listen ad-free? Try our Graphs Course? Join Data Skeptic+ for $5 / month of $50 / year

https://plus.dataskeptic.com

  continue reading

570 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش