Artwork

محتوای ارائه شده توسط HackerNoon. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط HackerNoon یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Here's How ShareChat Scaled Their ML Feature Store 1000X Without Scaling the Database

12:42
 
اشتراک گذاری
 

Manage episode 508413559 series 3474670
محتوای ارائه شده توسط HackerNoon. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط HackerNoon یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

This story was originally published on HackerNoon at: https://hackernoon.com/heres-how-sharechat-scaled-their-ml-feature-store-1000x-without-scaling-the-database.
How ShareChat scaled its ML feature store to 1B features/sec on ScyllaDB, achieving 1000X performance without scaling the database.
Check more stories related to data-science at: https://hackernoon.com/c/data-science. You can also check exclusive content about #sharechat-ml-feature-store, #scylladb-scaling-case-study, #ml-feature-store-optimization, #sharechat-moj, #low-latency-ml-infrastructure, #scylladb-database-optimization, #p99-conf-sharechat-talk, #good-company, and more.
This story was written by: @scylladb. Learn more about this writer by checking @scylladb's about page, and for more stories, please visit hackernoon.com.
ShareChat scaled its ML feature store from failure at 1M features/sec to 1B features/sec using ScyllaDB optimizations, caching hacks, and relentless tuning. By rethinking schemas, tiling, and caching strategies, engineers avoided scaling the database, cut latency, and boosted cache hit rates—proving performance engineering beats brute-force scaling.

  continue reading

137 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 508413559 series 3474670
محتوای ارائه شده توسط HackerNoon. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط HackerNoon یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

This story was originally published on HackerNoon at: https://hackernoon.com/heres-how-sharechat-scaled-their-ml-feature-store-1000x-without-scaling-the-database.
How ShareChat scaled its ML feature store to 1B features/sec on ScyllaDB, achieving 1000X performance without scaling the database.
Check more stories related to data-science at: https://hackernoon.com/c/data-science. You can also check exclusive content about #sharechat-ml-feature-store, #scylladb-scaling-case-study, #ml-feature-store-optimization, #sharechat-moj, #low-latency-ml-infrastructure, #scylladb-database-optimization, #p99-conf-sharechat-talk, #good-company, and more.
This story was written by: @scylladb. Learn more about this writer by checking @scylladb's about page, and for more stories, please visit hackernoon.com.
ShareChat scaled its ML feature store from failure at 1M features/sec to 1B features/sec using ScyllaDB optimizations, caching hacks, and relentless tuning. By rethinking schemas, tiling, and caching strategies, engineers avoided scaling the database, cut latency, and boosted cache hit rates—proving performance engineering beats brute-force scaling.

  continue reading

137 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش