Artwork

محتوای ارائه شده توسط Francesco Gadaleta. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Francesco Gadaleta یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Why AI Researchers Are Suddenly Obsessed With Whirlpools (Ep. 293)

33:15
 
اشتراک گذاری
 

Manage episode 516680558 series 3497898
محتوای ارائه شده توسط Francesco Gadaleta. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Francesco Gadaleta یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

VortexNet uses actual whirlpools to build neural networks. Seriously.
By borrowing equations from fluid dynamics, this new architecture might solve deep learning's toughest problems—from vanishing gradients to long-range dependencies.
Today we explain how vortex shedding, the Strouhal number, and turbulent flows might change everything in AI.

Sponsors

This episode is brought to you by Statistical Horizons
At Statistical Horizons, you can stay ahead with expert-led livestream seminars that make data analytics and AI methods practical and accessible.
Join thousands of researchers and professionals who’ve advanced their careers with Statistical Horizons.
Get $200 off any seminar with code DATA25 at https://statisticalhorizons.com

References

https://samim.io/p/2025-01-18-vortextnet/

  continue reading

297 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 516680558 series 3497898
محتوای ارائه شده توسط Francesco Gadaleta. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Francesco Gadaleta یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

VortexNet uses actual whirlpools to build neural networks. Seriously.
By borrowing equations from fluid dynamics, this new architecture might solve deep learning's toughest problems—from vanishing gradients to long-range dependencies.
Today we explain how vortex shedding, the Strouhal number, and turbulent flows might change everything in AI.

Sponsors

This episode is brought to you by Statistical Horizons
At Statistical Horizons, you can stay ahead with expert-led livestream seminars that make data analytics and AI methods practical and accessible.
Join thousands of researchers and professionals who’ve advanced their careers with Statistical Horizons.
Get $200 off any seminar with code DATA25 at https://statisticalhorizons.com

References

https://samim.io/p/2025-01-18-vortextnet/

  continue reading

297 قسمت

All episodes

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش