Artwork

محتوای ارائه شده توسط Sébastien Stormacq and Amazon Web Services. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Sébastien Stormacq and Amazon Web Services یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Episode 046 - Computer Vision on AWS with Francesco Pochetti – Part 2

30:07
 
اشتراک گذاری
 

بایگانی مجموعه ها ("فیدهای غیر فعال" status)

When? This feed was archived on February 10, 2025 05:10 (4M ago). Last successful fetch was on January 10, 2025 06:04 (5M ago)

Why? فیدهای غیر فعال status. سرورهای ما، برای یک دوره پایدار، قادر به بازیابی یک فید پادکست معتبر نبوده اند.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 434735664 series 3593668
محتوای ارائه شده توسط Sébastien Stormacq and Amazon Web Services. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Sébastien Stormacq and Amazon Web Services یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
In part two, Dave chats again with Francesco Pochetti, Senior Machine Language Engineer at Bolt, and an AWS Machine Learning Hero. In this episode, Francesco dives deep in the ML tools on AWS, starting with the tools such as NVIDIA Triton and TensorRT, and how to improve processing time for Computer Vision. He also covers Amazon SageMaker, and many other AWS ML services as well as deploying ML models using Docker in the best way possible. If you missed it, you could listen to part one of this conversation in Episode 045. Francesco on Twitter: https://twitter.com/Fra_Pochetti Dave on Twitter: https://twitter.com/thedavedev Francesco’s Website: https://francescopochetti.com/ Francesco’s LinkedIn: https://www.linkedin.com/in/francescopochetti/ Francesco’s GitHub: https://github.com/FraPochetti [BLOG] Blurry faces: Training, Optimizing and Deploying a segmentation model on Amazon SageMaker with NVIDIA TensorRT and NVIDIA Triton - https://francescopochetti.com/blurry-faces-a-journey-from-training-a-segmentation-model-to-deploying-tensorrt-to-nvidia-triton-on-amazon-sagemaker/ [BLOG] Machine Learning and Developing inside a Docker Container in Visual Studio Code https://francescopochetti.com/developing-inside-a-docker-container-in-visual-studio-code/ [BLOG] Deploying a Fashion-MNIST web app with Flask and Docker: https://francescopochetti.com/deploying-a-fashion-mnist-web-app-with-flask-and-docker/ [BLOG] IceVision meets AWS: detect LaTeX symbols in handwritten math and deploy with Docker on Lambda: https://francescopochetti.com/icevision-meets-aws-detect-latex-symbols-in-handwritten-math-and-deploy-with-docker-on-lambda/ [DOCS] Amazon Rekognition - https://aws.amazon.com/rekognition/ [DOCS] Amazon SageMaker - https://aws.amazon.com/sagemaker/ [DOCS] Amazon Textract - https://aws.amazon.com/textract/ [DOCS] Deploy fast and scalable AI with NVIDIA Triton Inference Server in Amazon SageMaker https://aws.amazon.com/blogs/machine-learning/deploy-fast-and-scalable-ai-with-nvidia-triton-inference-server-in-amazon-sagemaker/ [GIT] Nvidia Triton Inference Server: https://github.com/triton-inference-server/server/ [GIT] Blurry faces: Training, Optimizing and Deploying a segmentation model on Amazon SageMaker with NVIDIA TensorRT and NVIDIA Triton - https://github.com/FraPochetti/KagglePlaygrounds/tree/master/triton_nvidia_blurry_faces Subscribe: Amazon Music: https://music.amazon.com/podcasts/f8bf7630-2521-4b40-be90-c46a9222c159/aws-developers-podcast Apple Podcasts: https://podcasts.apple.com/us/podcast/aws-developers-podcast/id1574162669 Google Podcasts: https://podcasts.google.com/feed/aHR0cHM6Ly9mZWVkcy5zb3VuZGNsb3VkLmNvbS91c2Vycy9zb3VuZGNsb3VkOnVzZXJzOjk5NDM2MzU0OS9zb3VuZHMucnNz Spotify: https://open.spotify.com/show/7rQjgnBvuyr18K03tnEHBI TuneIn: https://tunein.com/podcasts/Technology-Podcasts/AWS-Developers-Podcast-p1461814/ RSS Feed: https://feeds.soundcloud
  continue reading

147 قسمت

Artwork
iconاشتراک گذاری
 

بایگانی مجموعه ها ("فیدهای غیر فعال" status)

When? This feed was archived on February 10, 2025 05:10 (4M ago). Last successful fetch was on January 10, 2025 06:04 (5M ago)

Why? فیدهای غیر فعال status. سرورهای ما، برای یک دوره پایدار، قادر به بازیابی یک فید پادکست معتبر نبوده اند.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 434735664 series 3593668
محتوای ارائه شده توسط Sébastien Stormacq and Amazon Web Services. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Sébastien Stormacq and Amazon Web Services یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
In part two, Dave chats again with Francesco Pochetti, Senior Machine Language Engineer at Bolt, and an AWS Machine Learning Hero. In this episode, Francesco dives deep in the ML tools on AWS, starting with the tools such as NVIDIA Triton and TensorRT, and how to improve processing time for Computer Vision. He also covers Amazon SageMaker, and many other AWS ML services as well as deploying ML models using Docker in the best way possible. If you missed it, you could listen to part one of this conversation in Episode 045. Francesco on Twitter: https://twitter.com/Fra_Pochetti Dave on Twitter: https://twitter.com/thedavedev Francesco’s Website: https://francescopochetti.com/ Francesco’s LinkedIn: https://www.linkedin.com/in/francescopochetti/ Francesco’s GitHub: https://github.com/FraPochetti [BLOG] Blurry faces: Training, Optimizing and Deploying a segmentation model on Amazon SageMaker with NVIDIA TensorRT and NVIDIA Triton - https://francescopochetti.com/blurry-faces-a-journey-from-training-a-segmentation-model-to-deploying-tensorrt-to-nvidia-triton-on-amazon-sagemaker/ [BLOG] Machine Learning and Developing inside a Docker Container in Visual Studio Code https://francescopochetti.com/developing-inside-a-docker-container-in-visual-studio-code/ [BLOG] Deploying a Fashion-MNIST web app with Flask and Docker: https://francescopochetti.com/deploying-a-fashion-mnist-web-app-with-flask-and-docker/ [BLOG] IceVision meets AWS: detect LaTeX symbols in handwritten math and deploy with Docker on Lambda: https://francescopochetti.com/icevision-meets-aws-detect-latex-symbols-in-handwritten-math-and-deploy-with-docker-on-lambda/ [DOCS] Amazon Rekognition - https://aws.amazon.com/rekognition/ [DOCS] Amazon SageMaker - https://aws.amazon.com/sagemaker/ [DOCS] Amazon Textract - https://aws.amazon.com/textract/ [DOCS] Deploy fast and scalable AI with NVIDIA Triton Inference Server in Amazon SageMaker https://aws.amazon.com/blogs/machine-learning/deploy-fast-and-scalable-ai-with-nvidia-triton-inference-server-in-amazon-sagemaker/ [GIT] Nvidia Triton Inference Server: https://github.com/triton-inference-server/server/ [GIT] Blurry faces: Training, Optimizing and Deploying a segmentation model on Amazon SageMaker with NVIDIA TensorRT and NVIDIA Triton - https://github.com/FraPochetti/KagglePlaygrounds/tree/master/triton_nvidia_blurry_faces Subscribe: Amazon Music: https://music.amazon.com/podcasts/f8bf7630-2521-4b40-be90-c46a9222c159/aws-developers-podcast Apple Podcasts: https://podcasts.apple.com/us/podcast/aws-developers-podcast/id1574162669 Google Podcasts: https://podcasts.google.com/feed/aHR0cHM6Ly9mZWVkcy5zb3VuZGNsb3VkLmNvbS91c2Vycy9zb3VuZGNsb3VkOnVzZXJzOjk5NDM2MzU0OS9zb3VuZHMucnNz Spotify: https://open.spotify.com/show/7rQjgnBvuyr18K03tnEHBI TuneIn: https://tunein.com/podcasts/Technology-Podcasts/AWS-Developers-Podcast-p1461814/ RSS Feed: https://feeds.soundcloud
  continue reading

147 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش