Artwork

محتوای ارائه شده توسط Brian Carter. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Brian Carter یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal
Player FM - برنامه پادکست
با برنامه Player FM !

Predicting the Future from the Past: Sequential RNN Stuff

9:47
 
اشتراک گذاری
 

Manage episode 448632341 series 3605861
محتوای ارائه شده توسط Brian Carter. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Brian Carter یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

This text is an excerpt from the "Dive into Deep Learning" book, specifically focusing on the processing of sequential data. The authors introduce the challenges of working with data that occurs in a specific order, like time series or text, and how these sequences cannot be treated as independent observations. They delve into autoregressive models, where future values are predicted based on past values, and highlight the common problem of error accumulation when predicting further into the future. The text discusses the concept of Markov models, where only a limited history is needed to predict future events, as well as the importance of understanding the causal structure of the data. The excerpt then provides a practical example of using linear regression for autoregressive modeling on synthetic time series data and demonstrates the limitations of simple models for long-term prediction.

Read more: https://d2l.ai/chapter_recurrent-neural-networks/sequence.html

  continue reading

71 قسمت

Artwork
iconاشتراک گذاری
 
Manage episode 448632341 series 3605861
محتوای ارائه شده توسط Brian Carter. تمام محتوای پادکست شامل قسمت‌ها، گرافیک‌ها و توضیحات پادکست مستقیماً توسط Brian Carter یا شریک پلتفرم پادکست آن‌ها آپلود و ارائه می‌شوند. اگر فکر می‌کنید شخصی بدون اجازه شما از اثر دارای حق نسخه‌برداری شما استفاده می‌کند، می‌توانید روندی که در اینجا شرح داده شده است را دنبال کنید.https://fa.player.fm/legal

This text is an excerpt from the "Dive into Deep Learning" book, specifically focusing on the processing of sequential data. The authors introduce the challenges of working with data that occurs in a specific order, like time series or text, and how these sequences cannot be treated as independent observations. They delve into autoregressive models, where future values are predicted based on past values, and highlight the common problem of error accumulation when predicting further into the future. The text discusses the concept of Markov models, where only a limited history is needed to predict future events, as well as the importance of understanding the causal structure of the data. The excerpt then provides a practical example of using linear regression for autoregressive modeling on synthetic time series data and demonstrates the limitations of simple models for long-term prediction.

Read more: https://d2l.ai/chapter_recurrent-neural-networks/sequence.html

  continue reading

71 قسمت

همه قسمت ها

×
 
Loading …

به Player FM خوش آمدید!

Player FM در سراسر وب را برای یافتن پادکست های با کیفیت اسکن می کند تا همین الان لذت ببرید. این بهترین برنامه ی پادکست است که در اندروید، آیفون و وب کار می کند. ثبت نام کنید تا اشتراک های شما در بین دستگاه های مختلف همگام سازی شود.

 

راهنمای مرجع سریع

در حین کاوش به این نمایش گوش دهید
پخش